亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold

山崩 预警系统 危害 地质学 自然灾害 环境科学 地震学 计算机科学 海洋学 有机化学 化学 电信
作者
Faming Huang,Jiawu Chen,Weiping Liu,Jinsong Huang,Haoyuan Hong,Wei Chen
出处
期刊:Geomorphology [Elsevier]
卷期号:408: 108236-108236 被引量:180
标识
DOI:10.1016/j.geomorph.2022.108236
摘要

Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration ( EE-D ), effective rainfall intensity-duration ( EI-D ) and cumulative effective rainfall-effective rainfall intensity ( EE-EI ) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. • Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold. • Various machine learning models are compared for predicting landslide susceptibility. • Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored. • Effective rainfall intensity-duration threshold model has the highest accuracy than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
星辰大海应助石榴汁的书采纳,获得10
9秒前
25秒前
coco完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
徐矜发布了新的文献求助10
29秒前
Janus完成签到,获得积分10
37秒前
49秒前
空咻咻发布了新的文献求助10
53秒前
且听风吟发布了新的文献求助10
54秒前
57秒前
彩色凡英发布了新的文献求助30
58秒前
1分钟前
1分钟前
且听风吟完成签到,获得积分10
1分钟前
1分钟前
彩色凡英完成签到,获得积分10
1分钟前
FashionBoy应助呜呼采纳,获得10
1分钟前
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
打打应助zz采纳,获得10
2分钟前
张家宁发布了新的文献求助10
2分钟前
2分钟前
zz发布了新的文献求助10
2分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
3分钟前
贼歪歪完成签到,获得积分10
3分钟前
传奇3应助Zhao0112采纳,获得10
3分钟前
3分钟前
eatme完成签到,获得积分10
3分钟前
3分钟前
Zhao0112发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755406
求助须知:如何正确求助?哪些是违规求助? 5494623
关于积分的说明 15381200
捐赠科研通 4893493
什么是DOI,文献DOI怎么找? 2632160
邀请新用户注册赠送积分活动 1579994
关于科研通互助平台的介绍 1535824