Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold

山崩 预警系统 危害 地质学 自然灾害 环境科学 地震学 计算机科学 海洋学 有机化学 化学 电信
作者
Faming Huang,Jiawu Chen,Weiping Liu,Jinsong Huang,Haoyuan Hong,Wei Chen
出处
期刊:Geomorphology [Elsevier]
卷期号:408: 108236-108236 被引量:180
标识
DOI:10.1016/j.geomorph.2022.108236
摘要

Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration ( EE-D ), effective rainfall intensity-duration ( EI-D ) and cumulative effective rainfall-effective rainfall intensity ( EE-EI ) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. • Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold. • Various machine learning models are compared for predicting landslide susceptibility. • Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored. • Effective rainfall intensity-duration threshold model has the highest accuracy than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不ins你_完成签到 ,获得积分10
1秒前
joey发布了新的文献求助10
1秒前
小叶子发布了新的文献求助10
1秒前
山河完成签到,获得积分10
1秒前
张玉龙发布了新的文献求助10
1秒前
三重积分咖啡完成签到 ,获得积分10
1秒前
阿州完成签到,获得积分10
2秒前
2秒前
李治稳发布了新的文献求助10
2秒前
scxl2000完成签到 ,获得积分10
6秒前
阔达的扬完成签到,获得积分10
6秒前
6秒前
香香香发布了新的文献求助150
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
mia完成签到,获得积分10
9秒前
Jasper应助妩媚的舞仙采纳,获得10
10秒前
10秒前
学术机器1完成签到,获得积分20
10秒前
joey完成签到,获得积分10
10秒前
11秒前
ddddduan完成签到 ,获得积分10
11秒前
Lucas应助yuanyuan采纳,获得10
11秒前
pk完成签到,获得积分10
11秒前
菲菲呀发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI6应助平常破茧采纳,获得10
12秒前
活力的静曼完成签到,获得积分10
13秒前
linkman发布了新的文献求助30
13秒前
循环发布了新的文献求助10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
小路发布了新的文献求助10
16秒前
华仔应助Gui桂采纳,获得10
17秒前
菲菲完成签到 ,获得积分10
17秒前
Owen应助愉快南琴采纳,获得10
18秒前
滴滴答答完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675410
求助须知:如何正确求助?哪些是违规求助? 4946126
关于积分的说明 15153028
捐赠科研通 4834696
什么是DOI,文献DOI怎么找? 2589599
邀请新用户注册赠送积分活动 1543316
关于科研通互助平台的介绍 1501172