Built-in electric field mediated peroxymonosulfate activation over biochar supported-Co3O4 catalyst for tetracycline hydrochloride degradation

催化作用 生物炭 盐酸四环素 化学 降级(电信) 氧化还原 电子转移 复合数 催化循环 纳米颗粒 化学工程 四环素 光化学 材料科学 无机化学 有机化学 热解 复合材料 生物化学 工程类 抗生素 电信 计算机科学
作者
Minghui Xiong,Juntao Yan,Guozhi Fan,Yanyu Liu,Bo Chai,Chunlei Wang,Guangsen Song
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:444: 136589-136589 被引量:76
标识
DOI:10.1016/j.cej.2022.136589
摘要

The strong electronic interaction between heterogeneous composite catalysts facilitates the charge separation and transfer, which is favorable for the enhancement of catalytic performance. Herein, the rape straw derived biochar (BC) supported ultrafine Co3O4 composites were synthesized for tetracycline hydrochloride (TC) degradation via activating peroxymonosulfate (PMS), and the built-in electric field (BIEF) driven catalytic degradation mechanism was proposed. The results indicated that 20 wt% Co3O4/BC catalyst could achieve 90% degradation efficiency of TC within 20 min, and demonstrated that BC not only served as a support to significantly inhibit the agglomeration of Co3O4 nanoparticles and improve the stability of catalyst, but also behaved as an activator of PMS to participate in the catalytic degradation reaction. Both radical pathway (SO4·-, ·OH and O2·-) and non-radical process (1O2 and direct electron transfer) were involved in the Co3O4/BC/PMS system, and the role of the latter is more prominent, in which Co2+/Co3+ redox cycle and C = O groups on the BC were the possible active sites. Furthermore, the density functional theory (DFT) calculations revealed that a BIEF pointing from BC to Co3O4 at the interface was formed, which could act as the internal driving force for electron transfer to accelerate the redox cycle of Co2+/Co3+ and induce the direct electron transfer, and thus resulting in the better degradation of TC. This work not only offered a mechanistic insight into synergistic effects of composite catalyst in PMS activation, but also provided a win–win strategy of realizing the resource utilization of agricultural waste and environmental remediation simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一吨哥特羽毛完成签到 ,获得积分10
1秒前
无限猫咪完成签到,获得积分10
1秒前
1秒前
ouwenwen完成签到,获得积分10
3秒前
科研通AI2S应助zzd12318采纳,获得10
3秒前
NexusExplorer应助朴素的天薇采纳,获得150
5秒前
晶莹黎完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助N7采纳,获得10
6秒前
海洋岩土12138完成签到 ,获得积分10
7秒前
NexusExplorer应助大宝慧采纳,获得10
7秒前
lu0000xuan发布了新的文献求助10
11秒前
YUN发布了新的文献求助10
11秒前
领导范儿应助戴先森采纳,获得10
12秒前
毛毛猫完成签到 ,获得积分10
12秒前
12秒前
13秒前
15秒前
灰鸽舞发布了新的文献求助10
15秒前
16秒前
小其发布了新的文献求助20
16秒前
17秒前
17秒前
may发布了新的文献求助10
18秒前
糊秃秃完成签到,获得积分10
18秒前
18秒前
科学家发布了新的文献求助10
18秒前
Leiting完成签到,获得积分10
19秒前
顾矜应助lu0000xuan采纳,获得10
19秒前
王王王发布了新的文献求助10
20秒前
水池边发布了新的文献求助10
20秒前
酷酷的藏鸟完成签到,获得积分10
22秒前
戴先森发布了新的文献求助10
22秒前
MissLi完成签到,获得积分10
23秒前
Leiting发布了新的文献求助10
23秒前
郁乾完成签到,获得积分10
24秒前
cyw完成签到,获得积分10
24秒前
25秒前
FashionBoy应助Gryphon采纳,获得10
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655