A Device-free Human Fall Detection System Based on GMM-HMM Using WiFi Signals

隐马尔可夫模型 计算机科学 混合模型 滑动窗口协议 可穿戴计算机 实时计算 特征(语言学) 人工智能 特征提取 模式识别(心理学) 计算机视觉 嵌入式系统 窗口(计算) 语言学 操作系统 哲学
作者
Xiaoyan Cheng,Binke Huang,Jing Zong
标识
DOI:10.1109/icece54449.2021.9674346
摘要

The increase in human life span has created a demand for health care and remote monitoring technologies for the elderly, and falls are one of the major health care threats for those living alone. Traditional fall detection systems based on vision, sensor networks, or wearable devices have some inherent limitations, which makes it difficult to be popularized in engineering applications. In this paper, we propose a real-time, non-contact, low-cost but accurate indoor fall detection system using commercial WiFi equipment. The CSI phase difference expansion matrix is used as the fall detection feature and an effective approach is designed to intercept fall activity signals by using sliding window and labeling methods. Furthermore, the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) approach is innovatively migrated to a WiFi-based identification system which is originally used for human 3D skeleton-based activity recognition. The approach is of great value for its high accuracy compared with other classification algorithms, such as LSTM, Random forest. Based on the above approaches, our proposed system is implemented on two computers equipped with commercial 802.1 ln NIC, and the system performance is evaluated in three typical indoor scenarios. The experimental results show that the system has superior performance and can realize real-time fall detection for a single person.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡忻完成签到,获得积分10
1秒前
3秒前
zzh完成签到,获得积分10
4秒前
6秒前
6秒前
爱吃果果的泡泡完成签到,获得积分10
6秒前
tongtong完成签到,获得积分10
6秒前
shuang0116应助sp采纳,获得10
6秒前
无花果应助小王采纳,获得10
6秒前
7秒前
Yancent应助重要手机采纳,获得10
8秒前
Shuyang完成签到,获得积分20
8秒前
9秒前
安然发布了新的文献求助10
9秒前
9秒前
SYLH应助stargazor采纳,获得10
10秒前
zzh发布了新的文献求助10
10秒前
11秒前
慕青应助abcdefg采纳,获得10
11秒前
Akim应助哈哈采纳,获得30
13秒前
15秒前
科研通AI5应助tongtong采纳,获得10
16秒前
疯狂的雁荷完成签到,获得积分10
16秒前
17秒前
21秒前
22秒前
YI完成签到,获得积分10
22秒前
24秒前
嘿嘿完成签到,获得积分10
24秒前
jeesy完成签到,获得积分10
25秒前
刘七七努力搞科研完成签到 ,获得积分10
26秒前
28秒前
28秒前
Sicily完成签到,获得积分10
28秒前
WspCool完成签到,获得积分10
29秒前
安然发布了新的文献求助10
30秒前
30秒前
打打应助Shuyang采纳,获得10
31秒前
ramsey33完成签到 ,获得积分10
33秒前
毛豆应助小李子采纳,获得10
34秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475940
求助须知:如何正确求助?哪些是违规求助? 3067572
关于积分的说明 9104917
捐赠科研通 2759160
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204