FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Leoniko采纳,获得10
刚刚
超级纸飞机完成签到,获得积分10
1秒前
2秒前
老麦发布了新的文献求助10
2秒前
懒惰饼子完成签到,获得积分10
2秒前
Chunxue发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
领子完成签到,获得积分10
4秒前
刘鹏宇发布了新的文献求助10
4秒前
隐形曼青应助夏末采纳,获得10
5秒前
小乔发布了新的文献求助10
5秒前
Jupiter完成签到,获得积分10
5秒前
yin完成签到,获得积分10
5秒前
6秒前
cyy发布了新的文献求助50
6秒前
7秒前
7秒前
7秒前
CodeCraft应助RTY采纳,获得10
7秒前
田様应助扶风阁主采纳,获得10
7秒前
dovedd完成签到,获得积分10
8秒前
koi完成签到,获得积分10
8秒前
8秒前
粗心的孱发布了新的文献求助10
8秒前
活力尔安发布了新的文献求助10
9秒前
会飞的生菜完成签到,获得积分10
10秒前
10秒前
shiwg完成签到,获得积分10
11秒前
12秒前
刘鹏宇完成签到,获得积分10
12秒前
Leoniko发布了新的文献求助10
12秒前
dovedd发布了新的文献求助20
12秒前
Whiaper完成签到,获得积分10
12秒前
13秒前
科研小狗发布了新的文献求助10
13秒前
Exc完成签到,获得积分0
13秒前
顽主完成签到,获得积分10
13秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257586
求助须知:如何正确求助?哪些是违规求助? 2899484
关于积分的说明 8306019
捐赠科研通 2568694
什么是DOI,文献DOI怎么找? 1395263
科研通“疑难数据库(出版商)”最低求助积分说明 652986
邀请新用户注册赠送积分活动 630793