亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助苦瓜大王采纳,获得10
刚刚
1秒前
SciGPT应助carrie采纳,获得10
3秒前
6秒前
8秒前
zhaop发布了新的文献求助10
12秒前
超级微笑完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助20
23秒前
31秒前
冷艳妙柏完成签到,获得积分10
32秒前
谨慎鞅发布了新的文献求助10
34秒前
37秒前
77发布了新的文献求助10
38秒前
wop111发布了新的文献求助10
42秒前
华仔应助谨慎鞅采纳,获得10
43秒前
77完成签到,获得积分10
49秒前
58秒前
Lz发布了新的文献求助10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Lz完成签到 ,获得积分10
1分钟前
1分钟前
Banbor2021完成签到,获得积分0
1分钟前
科目三应助wop111采纳,获得10
1分钟前
激昂的寒荷完成签到 ,获得积分10
1分钟前
bkagyin应助lzy采纳,获得30
2分钟前
winkin完成签到,获得积分10
2分钟前
顾矜应助zhaop采纳,获得10
2分钟前
默默白桃完成签到 ,获得积分10
2分钟前
隐形曼青应助winkin采纳,获得10
2分钟前
2分钟前
zhaop发布了新的文献求助10
2分钟前
谨慎的雁桃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZgnomeshghT发布了新的文献求助10
2分钟前
3分钟前
3分钟前
小马甲应助ZgnomeshghT采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019288
求助须知:如何正确求助?哪些是违规求助? 4258312
关于积分的说明 13270935
捐赠科研通 4063164
什么是DOI,文献DOI怎么找? 2222498
邀请新用户注册赠送积分活动 1231537
关于科研通互助平台的介绍 1154560