FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
荔枝吖发布了新的文献求助10
3秒前
qin完成签到,获得积分10
4秒前
拿铁五分糖完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
江蹇完成签到,获得积分10
5秒前
小二_来篇一作完成签到 ,获得积分10
7秒前
TingtingGZ完成签到,获得积分10
9秒前
鱼鱼发布了新的文献求助10
10秒前
可可完成签到 ,获得积分10
10秒前
13秒前
14秒前
zhao 123完成签到,获得积分10
15秒前
15秒前
摆烂王子完成签到,获得积分10
15秒前
白紫寒发布了新的文献求助30
17秒前
塔莉娅完成签到,获得积分10
17秒前
cancan发布了新的文献求助10
18秒前
浮游应助wanna采纳,获得10
19秒前
20秒前
21秒前
摆烂王子发布了新的文献求助10
24秒前
科目三应助baihehuakai采纳,获得30
24秒前
量子星尘发布了新的文献求助10
24秒前
简单小懒虫完成签到 ,获得积分10
27秒前
打打应助肽聚糖采纳,获得10
31秒前
LooYen发布了新的文献求助10
32秒前
32秒前
32秒前
甜9完成签到 ,获得积分10
32秒前
32秒前
33秒前
37秒前
可靠板栗发布了新的文献求助10
38秒前
文静冰露发布了新的文献求助10
38秒前
39秒前
王圈完成签到 ,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740