FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
妮儿发布了新的文献求助10
1秒前
所所应助微笑饼干采纳,获得10
1秒前
肉肉儿完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Miro完成签到,获得积分10
2秒前
万能图书馆应助北北北采纳,获得10
2秒前
李健的小迷弟应助Karina采纳,获得10
2秒前
3秒前
ZWX发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
4秒前
大模型应助瑞某人采纳,获得10
4秒前
充电宝应助KevinLeng采纳,获得10
4秒前
拼搏忆文发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
12138发布了新的文献求助30
6秒前
灿宝鲨鱼发布了新的文献求助10
6秒前
6秒前
6秒前
o10发布了新的文献求助10
6秒前
7秒前
hzh发布了新的文献求助10
7秒前
欣喜莫茗发布了新的文献求助10
7秒前
领导范儿应助魔幻灯泡采纳,获得10
8秒前
8秒前
Anquan完成签到,获得积分10
9秒前
小栗子发布了新的文献求助30
9秒前
小束发布了新的文献求助10
9秒前
端庄夏青发布了新的文献求助10
10秒前
10秒前
11秒前
趣乐多发布了新的文献求助10
11秒前
Xorgan发布了新的文献求助10
11秒前
拼搏忆文完成签到,获得积分10
11秒前
梦凡发布了新的文献求助10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442561
求助须知:如何正确求助?哪些是违规求助? 4552798
关于积分的说明 14238725
捐赠科研通 4474028
什么是DOI,文献DOI怎么找? 2451870
邀请新用户注册赠送积分活动 1442747
关于科研通互助平台的介绍 1418593