FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenwen完成签到 ,获得积分10
1秒前
1秒前
1秒前
热心易绿完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
TL完成签到 ,获得积分10
3秒前
3秒前
香蕉吃鱼发布了新的文献求助10
3秒前
4秒前
ghx发布了新的文献求助20
4秒前
欧皇降玲完成签到,获得积分10
4秒前
sh131发布了新的文献求助10
5秒前
5秒前
干净幼翠应助fxx采纳,获得10
5秒前
福中医完成签到,获得积分10
5秒前
DK发布了新的文献求助10
5秒前
派大星的海洋裤完成签到,获得积分10
6秒前
TL关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
8秒前
脑洞疼应助jy采纳,获得10
8秒前
1816013153发布了新的文献求助10
9秒前
qqdm发布了新的文献求助10
9秒前
珂珂完成签到,获得积分10
10秒前
wdy完成签到,获得积分10
11秒前
小点点cy_完成签到 ,获得积分10
12秒前
华仔应助韩钰小宝采纳,获得10
12秒前
12秒前
高健晨发布了新的文献求助10
12秒前
13秒前
koui完成签到 ,获得积分10
14秒前
今后应助刘淼采纳,获得10
14秒前
韩明佐完成签到,获得积分10
15秒前
科研通AI6应助zsl采纳,获得10
15秒前
愤怒的源智完成签到,获得积分10
16秒前
16秒前
16秒前
干羞花完成签到,获得积分0
17秒前
解冰凡完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580415
求助须知:如何正确求助?哪些是违规求助? 4665209
关于积分的说明 14755310
捐赠科研通 4606804
什么是DOI,文献DOI怎么找? 2527958
邀请新用户注册赠送积分活动 1497277
关于科研通互助平台的介绍 1466331