FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
难过剑成关注了科研通微信公众号
刚刚
HS完成签到,获得积分10
1秒前
1秒前
陈骏康发布了新的文献求助10
2秒前
dengdeng发布了新的文献求助10
3秒前
jinyu发布了新的文献求助10
3秒前
rr发布了新的文献求助10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
CodeCraft应助一一采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
多乐多应助科研通管家采纳,获得10
5秒前
jjf发布了新的文献求助10
5秒前
狂野萤应助科研通管家采纳,获得10
5秒前
反恐分子应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小许发布了新的文献求助10
7秒前
炙热晓露发布了新的文献求助10
7秒前
orixero应助韩豆乐采纳,获得10
7秒前
8秒前
烟花应助灯箱采纳,获得10
8秒前
8秒前
指尖的阿里阿德涅完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602562
求助须知:如何正确求助?哪些是违规求助? 4687654
关于积分的说明 14850581
捐赠科研通 4684527
什么是DOI,文献DOI怎么找? 2539963
邀请新用户注册赠送积分活动 1506690
关于科研通互助平台的介绍 1471428