清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
32秒前
36秒前
锦鲤发布了新的文献求助10
39秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
充电宝应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
今后应助锦鲤采纳,获得10
56秒前
我很好完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
elsa622完成签到 ,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
2分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
甜菜完成签到,获得积分10
2分钟前
2分钟前
小猪完成签到,获得积分10
3分钟前
3分钟前
asdasd0完成签到,获得积分10
3分钟前
asdasd0发布了新的文献求助10
3分钟前
3分钟前
4分钟前
x94264482完成签到,获得积分10
4分钟前
4分钟前
4分钟前
咚咚发布了新的文献求助10
4分钟前
锦鲤发布了新的文献求助10
4分钟前
活泼夏波完成签到,获得积分10
4分钟前
徐涛完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739944
求助须知:如何正确求助?哪些是违规求助? 5391568
关于积分的说明 15340129
捐赠科研通 4882243
什么是DOI,文献DOI怎么找? 2624286
邀请新用户注册赠送积分活动 1573010
关于科研通互助平台的介绍 1529870