FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones

计算机科学 现场可编程门阵列 边缘设备 卷积神经网络 计算机硬件 嵌入式系统 计算机工程 并行计算 人工智能 云计算 操作系统
作者
Zhichao Zhang,M. A. Parvez Mahmud,Abbas Z. Kouzani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21357-21369 被引量:23
标识
DOI:10.1109/jiot.2022.3179016
摘要

Executing deep neural networks (DNNs) on resource-constraint edge devices, such as drones, offers low inference latency, high data privacy, and reduced network traffic. However, deploying DNNs on such devices is a challenging task. During DNN inference, intermediate results require significant data movement and frequent off-chip memory (DRAM) access, which decreases the inference speed and power efficiency. To address this issue, this article presents a field-programmable gate array (FPGA)-based convolutional neural network (CNN) accelerator, named FitNN, which improves the speed and power efficiency of CNN inference by reducing data movements. FitNN adopts a pretrained CNN of iSmart2, which is composed of depthwise and pointwise blocks in the Mobilenet structure. A cross-layer dataflow strategy is proposed to reduce off-chip data transfer of feature maps. Also, multilevel buffers are proposed to keep the most needed data on-chip (in block RAM) and avoid off-chip data reorganization and reloading. Finally, a computation core is proposed to operate the depthwise, pointwise, and max-pooling computation as soon as the data arrive without reorganization, which suits the real-life scenario of the data arriving in sequence. In our experiment, FitNN is implemented on two FPGA-based platforms (both at 150 MHz), Ultra96-V2 and PYNQ-Z1, for drone-based object detection with batch size = 1. The results show that FitNN achieves 15 frames per second (FPS) on Ultra96-V2, with power consumption of 4.69 W. On PYNQ-Z1, FitNN achieves 9 FPS with 1.9 W of power consumption. Compared with the previous FPGA-based implementation of iSmart2 CNN, FitNN increases the efficiency (FPS/W) by 2.37 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老牛完成签到 ,获得积分10
刚刚
cgl155410完成签到,获得积分10
2秒前
2秒前
2秒前
浮游应助冷傲藏鸟采纳,获得10
2秒前
3秒前
华仔应助伶俐碧萱采纳,获得10
4秒前
安心完成签到,获得积分10
4秒前
科研通AI2S应助May采纳,获得10
5秒前
6秒前
鱼鱼鱼鱼完成签到,获得积分20
6秒前
搜集达人应助梦希陌采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
曹玮完成签到 ,获得积分20
8秒前
橙子发布了新的文献求助10
8秒前
husy完成签到,获得积分10
8秒前
杨柳发布了新的文献求助10
9秒前
10秒前
10秒前
wanci应助鱼鱼鱼鱼采纳,获得10
11秒前
桐桐应助zwf123采纳,获得10
11秒前
顾矜应助ys采纳,获得20
12秒前
科研通AI6应助TWO宝采纳,获得10
12秒前
局内人发布了新的文献求助10
12秒前
完美世界应助maybe采纳,获得10
13秒前
14秒前
loong发布了新的文献求助10
14秒前
爱吃橙子的苹果水完成签到 ,获得积分10
15秒前
冷傲藏鸟完成签到,获得积分20
15秒前
Ava应助bxb采纳,获得10
15秒前
梦希陌完成签到,获得积分10
15秒前
16秒前
17秒前
nchenhao完成签到,获得积分10
17秒前
科研通AI6应助小丑采纳,获得10
18秒前
聪明怀寒发布了新的文献求助100
18秒前
FashionBoy应助杨柳采纳,获得10
19秒前
传奇3应助husy采纳,获得10
19秒前
ZhangL发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869