Fast Multi-Physics Simulation of Microwave Filters via Deep Hybrid Neural Network

多物理 计算机科学 人工神经网络 有限元法 过程(计算) 机器学习 人工智能 计算机工程 算法 计算科学 工程类 操作系统 结构工程
作者
Yuanguo Zhou,Jianan Xie,Qiang Ren,Huan Huan Zhang,Qing Liu
出处
期刊:IEEE Transactions on Antennas and Propagation [IEEE Antennas & Propagation Society]
卷期号:70 (7): 5165-5178 被引量:9
标识
DOI:10.1109/tap.2022.3188627
摘要

One fundamental difficulty in multiphysics numerical simulation is the complex interactions between different physics domains leading to plenty of computational costs. Although neural networks have recently been introduced in multiphysics simulations, the modeling complexity and the enormous amount of training data required may still pose significant challenges to researchers. In this work, we introduce a low-cost, electromagnetic-centric, multiphysics modeling approach to simulate microwave filters. With ground-truth datasets being generated from the finite element method, a novel deep hybrid neural network (DHNN) model structure is introduced, which uses the sigmoid and the ReLU functions as activators to mimic the diversity of biological neurons. A new, more feasible training algorithm is proposed for the efficient development of the DHNN model. The algorithm adopts the design-of-experiment (DOE) sampling technique and is specifically designed for the simulation of multiphysics responses. The strong approximation ability of the DHNN can lead to high-accuracy modeling with fewer training data and less resource consumption. Another advantage of this approach is that the modeling process is more concise and easier to apply compared with other modeling technologies. Numerical examples show that the DHNN can achieve higher accurate results with much less training data compared to traditional ANNs. The advantages of the proposed method in computational efficiency are more pronounced, especially when the amount of input data increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉玉鼠发布了新的文献求助10
刚刚
ding应助li采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
小兵完成签到,获得积分10
刚刚
汐风应助机灵饼干采纳,获得10
刚刚
yyt完成签到,获得积分10
刚刚
李冰完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
脑洞疼应助duang采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
清脆语海发布了新的文献求助10
2秒前
ding应助322334采纳,获得10
2秒前
2秒前
wdddr发布了新的文献求助10
2秒前
王宁宁发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
DBP87弹完成签到 ,获得积分10
2秒前
2秒前
打打应助科研通管家采纳,获得10
3秒前
pengchen发布了新的文献求助10
3秒前
yznfly应助科研通管家采纳,获得30
3秒前
54发布了新的文献求助10
4秒前
4秒前
yiding完成签到 ,获得积分10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
lym发布了新的文献求助10
5秒前
思源应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
小马同学应助科研通管家采纳,获得10
5秒前
无脚鸟发布了新的文献求助10
5秒前
慕青应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849