Fast Multi-Physics Simulation of Microwave Filters via Deep Hybrid Neural Network

多物理 计算机科学 人工神经网络 有限元法 过程(计算) 机器学习 人工智能 计算机工程 算法 计算科学 工程类 操作系统 结构工程
作者
Yuanguo Zhou,Jianan Xie,Qiang Ren,Huan Huan Zhang,Qing Liu
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 5165-5178 被引量:9
标识
DOI:10.1109/tap.2022.3188627
摘要

One fundamental difficulty in multiphysics numerical simulation is the complex interactions between different physics domains leading to plenty of computational costs. Although neural networks have recently been introduced in multiphysics simulations, the modeling complexity and the enormous amount of training data required may still pose significant challenges to researchers. In this work, we introduce a low-cost, electromagnetic-centric, multiphysics modeling approach to simulate microwave filters. With ground-truth datasets being generated from the finite element method, a novel deep hybrid neural network (DHNN) model structure is introduced, which uses the sigmoid and the ReLU functions as activators to mimic the diversity of biological neurons. A new, more feasible training algorithm is proposed for the efficient development of the DHNN model. The algorithm adopts the design-of-experiment (DOE) sampling technique and is specifically designed for the simulation of multiphysics responses. The strong approximation ability of the DHNN can lead to high-accuracy modeling with fewer training data and less resource consumption. Another advantage of this approach is that the modeling process is more concise and easier to apply compared with other modeling technologies. Numerical examples show that the DHNN can achieve higher accurate results with much less training data compared to traditional ANNs. The advantages of the proposed method in computational efficiency are more pronounced, especially when the amount of input data increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助crush_zyd采纳,获得10
刚刚
阔达亿先完成签到,获得积分10
1秒前
Yara.H发布了新的文献求助10
1秒前
1秒前
3秒前
泽爷完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助耍酷乌采纳,获得10
4秒前
流流124141完成签到,获得积分10
4秒前
单薄店员完成签到,获得积分10
4秒前
5秒前
汉堡包应助想瘦的海豹采纳,获得10
5秒前
toking发布了新的文献求助10
5秒前
求知小生发布了新的文献求助10
5秒前
Daisy发布了新的文献求助10
6秒前
Lemon发布了新的文献求助10
6秒前
我是老大应助iufan采纳,获得10
7秒前
8秒前
小马甲应助司徒无剑采纳,获得10
9秒前
白鸽应助田叫兽采纳,获得10
9秒前
10秒前
王肖发布了新的文献求助10
10秒前
10秒前
CipherSage应助iufan采纳,获得10
10秒前
无花果应助Allot采纳,获得10
11秒前
11秒前
11秒前
12秒前
最初的远方完成签到,获得积分10
13秒前
天气一级棒完成签到,获得积分10
13秒前
zty完成签到,获得积分10
14秒前
耍酷的棉花糖完成签到,获得积分10
14秒前
14秒前
yjn发布了新的文献求助10
15秒前
访烟发布了新的文献求助10
15秒前
15秒前
15秒前
无名之辈完成签到,获得积分10
16秒前
小白完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825