Fast Multi-Physics Simulation of Microwave Filters via Deep Hybrid Neural Network

多物理 计算机科学 人工神经网络 有限元法 过程(计算) 机器学习 人工智能 计算机工程 算法 计算科学 工程类 操作系统 结构工程
作者
Yuanguo Zhou,Jianan Xie,Qiang Ren,Huan Huan Zhang,Qing Liu
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 5165-5178 被引量:9
标识
DOI:10.1109/tap.2022.3188627
摘要

One fundamental difficulty in multiphysics numerical simulation is the complex interactions between different physics domains leading to plenty of computational costs. Although neural networks have recently been introduced in multiphysics simulations, the modeling complexity and the enormous amount of training data required may still pose significant challenges to researchers. In this work, we introduce a low-cost, electromagnetic-centric, multiphysics modeling approach to simulate microwave filters. With ground-truth datasets being generated from the finite element method, a novel deep hybrid neural network (DHNN) model structure is introduced, which uses the sigmoid and the ReLU functions as activators to mimic the diversity of biological neurons. A new, more feasible training algorithm is proposed for the efficient development of the DHNN model. The algorithm adopts the design-of-experiment (DOE) sampling technique and is specifically designed for the simulation of multiphysics responses. The strong approximation ability of the DHNN can lead to high-accuracy modeling with fewer training data and less resource consumption. Another advantage of this approach is that the modeling process is more concise and easier to apply compared with other modeling technologies. Numerical examples show that the DHNN can achieve higher accurate results with much less training data compared to traditional ANNs. The advantages of the proposed method in computational efficiency are more pronounced, especially when the amount of input data increases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
canvas完成签到,获得积分10
1秒前
宇宇发布了新的文献求助10
1秒前
ctdd完成签到,获得积分20
2秒前
2秒前
测控完成签到,获得积分20
2秒前
冰苏打发布了新的文献求助10
2秒前
3秒前
Augenstern完成签到,获得积分10
3秒前
排骨年糕完成签到 ,获得积分10
3秒前
ZhuHeyu发布了新的文献求助10
4秒前
4秒前
haha完成签到,获得积分20
5秒前
Cheems_发布了新的文献求助10
5秒前
dhlswpu完成签到,获得积分10
5秒前
SciGPT应助满当当采纳,获得10
6秒前
思源应助俏皮的绝山采纳,获得10
6秒前
豹豹发布了新的文献求助10
6秒前
鲤鱼一一完成签到,获得积分10
6秒前
6秒前
科研通AI6应助ll采纳,获得10
7秒前
高挑的迎丝完成签到,获得积分10
7秒前
7秒前
ctdd发布了新的文献求助10
8秒前
8秒前
8秒前
Caroline发布了新的文献求助10
8秒前
CodeCraft应助桂桂采纳,获得10
8秒前
林狗发布了新的文献求助10
9秒前
10秒前
不懂白发布了新的文献求助10
11秒前
火星上代天完成签到,获得积分10
11秒前
鲤鱼一一发布了新的文献求助10
13秒前
勤恳雅莉举报kkm求助涉嫌违规
13秒前
量子星尘发布了新的文献求助10
13秒前
LL完成签到,获得积分10
13秒前
木木完成签到,获得积分10
14秒前
14秒前
浅梦星河完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577962
求助须知:如何正确求助?哪些是违规求助? 4663005
关于积分的说明 14744036
捐赠科研通 4603644
什么是DOI,文献DOI怎么找? 2526587
邀请新用户注册赠送积分活动 1496181
关于科研通互助平台的介绍 1465642