A Data-Driven Approach for Performance Evaluation of Autonomous eVTOLs

计算机科学 水准点(测量) 聚类分析 冗余(工程) 背景(考古学) 备份 性能预测 数据挖掘 模拟 机器学习 数据库 大地测量学 生物 操作系统 古生物学 地理
作者
Mrinmoy Sarkar,Xuyang Yan,Biniam Gebru,Abdul-Rauf Nuhu,Kishor Datta Gupta,Kyriakos G. Vamvoudakis,Abdollah Homaifar
标识
DOI:10.36227/techrxiv.20327208.v1
摘要

<p>In this paper, we develop a data-driven performance-based evaluation framework for a novel electric vertical takeoff and landing aircraft (eVTOL) in the context of Urban Air Mobility (UAM) applications. First, a two-stage comprehensive simulation framework is developed to generate a benchmark database for the performance evaluation of both UAS Traffic Management (UTM) algorithms and high-fidelity eVTOL dynamical models. In the developed simulation framework, we implement UTM algorithms and incorporate real-world constraints, e.g., vertiport infrastructures and different wind conditions. From the developed simulation framework, we generate 1,213,010 flight profiles. These flight profiles are used in a model based eVTOL performance evaluation tool as inputs to compute the physical performance of 3 types of eVTOLs. Due to the high computational cost of model-based eVTOL performance evaluation approaches, a clustering-based sampling procedure is employed to reduce the redundancy in the generated flight profiles and utilize the re-sampled flight profiles to form an eVTOL performance analysis dataset. We then train and compare several machine learning models on the eVTOL performance analysis dataset to predict: performance variables-flight conditions, aerodynamic coefficients, aircraft electronics, electric motor and propeller efficiencies. Finally, we deploy the proposed data-driven models in the framework and reduce the eVTOL performance inference time to real-time. The implementation of the proposed framework can be found on GitHub: https://github.com/mrinmoysarkar/eVTOL_performance_evaluation.git</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wyoou完成签到,获得积分10
1秒前
1秒前
1秒前
故意的傲玉应助lll采纳,获得10
1秒前
2秒前
请叫我风吹麦浪应助lm采纳,获得10
2秒前
2秒前
2秒前
3秒前
科研通AI5应助水獭采纳,获得10
4秒前
4秒前
4秒前
研友_nv2r4n发布了新的文献求助10
5秒前
喵叽发布了新的文献求助10
5秒前
槐夏完成签到,获得积分10
5秒前
6秒前
科研通AI5应助su采纳,获得10
6秒前
6秒前
科目三应助MJQ采纳,获得30
6秒前
6秒前
慕子发布了新的文献求助20
7秒前
lumangxiaozi完成签到,获得积分10
7秒前
积极的凌波完成签到,获得积分10
7秒前
xiaxiao应助小小酥采纳,获得100
7秒前
523完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
Hupoo发布了新的文献求助10
9秒前
传奇3应助冬瓜有内涵呐采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
Aurora发布了新的文献求助10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Chen发布了新的文献求助10
10秒前
prosperp应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762