已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fault Diagnosis of Rolling Bearings Using Dual-Tree Complex Wavelet Packet Transform and Time-Shifted Multiscale Range Entropy

计算机科学 熵(时间箭头) 算法 鉴别器 小波 特征提取 模式识别(心理学) 方位(导航) 粗集 时间序列 控制理论(社会学) 人工智能 数据挖掘 机器学习 物理 量子力学 电信 探测器 控制(管理)
作者
Tao Han,Jiancheng Gong,Xiaoqiang Yang,Lizhou An
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 59308-59326 被引量:8
标识
DOI:10.1109/access.2022.3180338
摘要

Most existing fault diagnosis methods for rolling bearings are single-stage; these methods can only judge the fault type but cannot detect the existence of a fault. Moreover, the uncertainty in pattern recognition may lead to misclassification of healthy bearings as faulty ones. This paper proposes a multistage fault detection scheme for rolling bearings. In the first stage, the sensitivity of the range entropy to bearing failure is used to define a threshold, based on which the health status of the bearing is judged. If the unknown bearing is judged to be faulty, the next stage is implemented. In the second stage, a fault feature extraction method based on dual-tree complex wavelet packet transform (DTCWPT), time-shifted multiscale range entropy (TSMRE), and t-distributed stochastic neighbor embedding (t-SNE) is proposed, and a random forest (RF) discriminator is used for fault classification. To achieve the desired performance of fault classification, a new coarsening approach for complexity measurement called TSMRE is developed on the basis of the range entropy (RE). First, the RE value of each time-shifted coarse-grained time series is calculated, and the TSMRE is obtained by averaging the entropy values. The TSMRE improves the coarse-graining processing of the MRE and enhances the stability and reliability of the algorithm. In addition, it can obtain more information from short time series using the time-shifted coarse-grained technology. Therefore, it is less dependent on the length of the original time series. Two sets of rolling bearing data are used for this experiment. The fault recognition rate of each category of samples is 100%. Therefore, the proposed multistage fault diagnosis method can pre-screen healthy bearings and accurately identify the failure types of faulty bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助木子采纳,获得10
2秒前
Ni发布了新的文献求助10
2秒前
4秒前
6秒前
lyf完成签到,获得积分10
12秒前
yss发布了新的文献求助10
13秒前
英俊的铭应助轻松念蕾采纳,获得10
16秒前
18秒前
沐阳完成签到,获得积分10
19秒前
19秒前
20秒前
FashionBoy应助椰椰采纳,获得10
21秒前
英俊的铭应助木鸽子采纳,获得10
22秒前
Cassiel发布了新的文献求助30
23秒前
Dale发布了新的文献求助10
24秒前
lyf发布了新的文献求助10
27秒前
27秒前
求学发布了新的文献求助10
27秒前
bkagyin应助yss采纳,获得30
27秒前
ender2017完成签到,获得积分10
27秒前
28秒前
zdyw发布了新的文献求助10
30秒前
dicc发布了新的文献求助10
32秒前
顺风顺水的薇容完成签到 ,获得积分10
34秒前
姚美阁完成签到 ,获得积分10
34秒前
35秒前
无脚鸟完成签到,获得积分10
35秒前
36秒前
38秒前
40秒前
虞翩跹发布了新的文献求助10
41秒前
调研昵称发布了新的文献求助10
42秒前
43秒前
44秒前
45秒前
45秒前
搜集达人应助如意的灰狼采纳,获得10
46秒前
煜琪完成签到 ,获得积分10
47秒前
虞翩跹完成签到,获得积分10
48秒前
48秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526254
求助须知:如何正确求助?哪些是违规求助? 3106684
关于积分的说明 9281258
捐赠科研通 2804208
什么是DOI,文献DOI怎么找? 1539365
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515