Fault Diagnosis of Rolling Bearings Using Dual-Tree Complex Wavelet Packet Transform and Time-Shifted Multiscale Range Entropy

计算机科学 熵(时间箭头) 算法 鉴别器 小波 特征提取 模式识别(心理学) 方位(导航) 粗集 时间序列 控制理论(社会学) 人工智能 数据挖掘 机器学习 物理 量子力学 电信 探测器 控制(管理)
作者
Tao Han,Jiancheng Gong,Xiaoqiang Yang,Lizhou An
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 59308-59326 被引量:8
标识
DOI:10.1109/access.2022.3180338
摘要

Most existing fault diagnosis methods for rolling bearings are single-stage; these methods can only judge the fault type but cannot detect the existence of a fault. Moreover, the uncertainty in pattern recognition may lead to misclassification of healthy bearings as faulty ones. This paper proposes a multistage fault detection scheme for rolling bearings. In the first stage, the sensitivity of the range entropy to bearing failure is used to define a threshold, based on which the health status of the bearing is judged. If the unknown bearing is judged to be faulty, the next stage is implemented. In the second stage, a fault feature extraction method based on dual-tree complex wavelet packet transform (DTCWPT), time-shifted multiscale range entropy (TSMRE), and t-distributed stochastic neighbor embedding (t-SNE) is proposed, and a random forest (RF) discriminator is used for fault classification. To achieve the desired performance of fault classification, a new coarsening approach for complexity measurement called TSMRE is developed on the basis of the range entropy (RE). First, the RE value of each time-shifted coarse-grained time series is calculated, and the TSMRE is obtained by averaging the entropy values. The TSMRE improves the coarse-graining processing of the MRE and enhances the stability and reliability of the algorithm. In addition, it can obtain more information from short time series using the time-shifted coarse-grained technology. Therefore, it is less dependent on the length of the original time series. Two sets of rolling bearing data are used for this experiment. The fault recognition rate of each category of samples is 100%. Therefore, the proposed multistage fault diagnosis method can pre-screen healthy bearings and accurately identify the failure types of faulty bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmare发布了新的文献求助10
刚刚
drughunter009发布了新的文献求助10
刚刚
哈哈发布了新的文献求助10
刚刚
上官若男应助王小冉采纳,获得10
1秒前
韦少完成签到,获得积分20
1秒前
司空元正发布了新的文献求助10
1秒前
2秒前
万木完成签到,获得积分10
2秒前
2秒前
Lucas应助晏清采纳,获得10
2秒前
谦让的小鸽子完成签到,获得积分10
2秒前
ziming313发布了新的文献求助10
2秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得30
4秒前
打打应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
fendy应助科研通管家采纳,获得20
4秒前
宁羽完成签到,获得积分20
4秒前
ED应助科研通管家采纳,获得10
4秒前
YANGJIE6发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
可爱的函函应助chenchen978采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
ED应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
善学以致用应助nightmare采纳,获得10
5秒前
郭家承发布了新的文献求助10
5秒前
大模型应助shanshanlaichi采纳,获得10
5秒前
饭团0814完成签到,获得积分10
6秒前
虾仁发布了新的文献求助10
6秒前
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751