亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-supported art education: a deep learning-based system for promoting university students’ artwork appreciation and painting outcomes

能力(人力资源) 心理学 数学教育 班级(哲学) 绘画 计算机科学 多媒体 人工智能 视觉艺术 社会心理学 艺术
作者
Min‐Chi Chiu,Gwo‐Jen Hwang,Lu‐Ho Hsia,Fong-Ming Shyu
出处
期刊:Interactive Learning Environments [Informa]
卷期号:32 (3): 824-842 被引量:32
标识
DOI:10.1080/10494820.2022.2100426
摘要

In a conventional art course, it is important for a teacher to provide feedback and guidance to individual students based on their learning status. However, it is challenging for teachers to provide immediate feedback to students without any aid. The advancement of artificial intelligence (AI) has provided a possible solution to cope with this problem. In this study, a deep learning-based art learning system (DL-ALS) was developed by employing a fine-tuned ResNet50 model for helping students identify and classify artworks. We aimed at cultivating students' accurate appreciation knowledge and artwork creation competence, as well as providing instant feedback and personalized guidance with the help of AI technology. To explore the effects of this system, a quasi-experiment was implemented in an artwork appreciation course at a university. A total of 46 university students from two classes who took the elective art course were recruited in the study. One class was the experimental group adopting DL-ALS learning, while the other was the control group adopting conventional technology-supported art learning (CT-AL). The results showed that in comparison with CT-AL, learning through the DL-ALS could facilitate students' learning achievement, technology acceptance, learning attitude, learning motivation, self-efficacy, satisfaction, and performance in the art course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助jianwuzhou采纳,获得10
9秒前
13秒前
14秒前
17秒前
kingsbro-xu完成签到,获得积分10
21秒前
科研小白发布了新的文献求助10
28秒前
科研小白完成签到,获得积分20
49秒前
1分钟前
jianwuzhou发布了新的文献求助10
1分钟前
假装学霸完成签到 ,获得积分10
2分钟前
曙光完成签到,获得积分10
2分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lucky完成签到 ,获得积分10
2分钟前
2分钟前
阿柴发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
abcdefg发布了新的文献求助10
3分钟前
3分钟前
iShine完成签到 ,获得积分10
3分钟前
龍一应助阿柴采纳,获得10
3分钟前
3分钟前
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
Dester发布了新的文献求助10
4分钟前
爆米花应助啦咯哦哦采纳,获得10
4分钟前
SC完成签到,获得积分10
4分钟前
归尘举报欢欢求助涉嫌违规
5分钟前
Dester完成签到,获得积分10
5分钟前
5分钟前
啦咯哦哦发布了新的文献求助10
5分钟前
SciGPT应助啦咯哦哦采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
YifanWang给叶子的求助进行了留言
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896