作者
Pan He,Xiaotian Zhang,Wenyi Wu,Guohao Liu,Sha Liu,Chi Wang,Haibo Yu
摘要
Our previous study has found that selenium (Se) can alleviate lipid accumulation caused by high-fat diet (HFD) in fish. This study aims to explore the selenoproteins (SePs) in grass carp Ctenopharyngodon idella by characterizing cDNAs of nine SeP genes (SELENOF, SELENOM, SELENOS, SELENOP1, SELENOP2, SELENOE, SELENOL, SELENOU1a and SELENOU1b) and measuring their transcriptional activity in response to HFD and HFD supplemented with 0.3 mg/Kg and 0.6 mg/Kg of Se (HSe 0.3 and HSe 0.6). Firstly, the nine SeP genes in grass carp encoded proteins with conserved functional protein regions in fish and other vertebrates. Secondly, the nine SeP genes except SELENOS showed high expression levels in the hepatopancreas, but in the adipose tissue, only SELENOS, SELENOE and SELENOU1b showed high expression levels. Further, HFD significantly up-regulated the expressions of SELENOF and SELENOS in the hepatopancreas and SELENOM in the adipose tissue of grass carp (P < 0.05), but significantly down-regulated the expressions of SELENOU1b in the hepatopancreas, SELENOP2, SELENOE, SELENOL and SELENOU1a in the adipose tissue and SELENOM in the muscle of grass carp (P < 0.05). In addition, for the hepatopancreas, the expressions of SELENOS in the HSe 0.3 group and SELENOF, SELENOM and SELENOP2 in the HSe 0.6 group significantly decreased compared with the HFD group (P < 0.05). For the adipose tissue, the expressions of SELENOF, SELENOP2, SELENOL, SELENOU1a and SELENOU1b in the HSe 0.3 group and SELENOP2, SELENOE, SELENOU1a and SELENOU1b in the HSe 0.6 group significantly increased compared with the HFD group (P < 0.05). In summary, the transcriptional activities of the nine SeP genes were regulated by the HFD and HFD supplemented with Se, indicating the potential role of these genes in the Se regulated lipid metabolism processes in grass carp, which is worthy of in-depth study.