HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 哲学 语言学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘雅寒完成签到,获得积分10
4秒前
7秒前
66完成签到,获得积分10
7秒前
9秒前
23完成签到,获得积分10
9秒前
yyzhou应助碲化材料采纳,获得10
10秒前
浮游应助Liu采纳,获得10
11秒前
称心语风完成签到,获得积分10
11秒前
lucky完成签到 ,获得积分10
13秒前
14秒前
小琪发布了新的文献求助10
14秒前
未晚完成签到 ,获得积分10
15秒前
16秒前
18秒前
19秒前
21秒前
你找谁哇发布了新的文献求助10
21秒前
starcraftfan完成签到,获得积分10
22秒前
sylus发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
鬼王神完成签到,获得积分10
26秒前
26秒前
赏金猎人John_Wang完成签到,获得积分10
26秒前
科目三应助Sience采纳,获得10
26秒前
quzhenzxxx完成签到 ,获得积分10
27秒前
27秒前
Polar_bear发布了新的文献求助10
28秒前
28秒前
29秒前
orixero应助冷酷莫言采纳,获得10
30秒前
甜豆包完成签到 ,获得积分10
32秒前
32秒前
天之道发布了新的文献求助10
34秒前
华仔应助bean采纳,获得10
34秒前
loulan发布了新的文献求助10
35秒前
yyanxuemin919发布了新的文献求助10
35秒前
李萍萍发布了新的文献求助10
36秒前
许大脚完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563569
求助须知:如何正确求助?哪些是违规求助? 4648446
关于积分的说明 14684930
捐赠科研通 4590411
什么是DOI,文献DOI怎么找? 2518501
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432