亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 哲学 语言学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Ylasime采纳,获得10
2秒前
3秒前
wang发布了新的文献求助10
7秒前
9秒前
黑熊精发布了新的文献求助10
15秒前
16秒前
Ylasime完成签到,获得积分10
30秒前
wang完成签到,获得积分10
31秒前
34秒前
Badada完成签到,获得积分10
46秒前
Ylasime发布了新的文献求助10
51秒前
54秒前
lu完成签到,获得积分10
1分钟前
1分钟前
lu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
BowieHuang应助小九九采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小九九完成签到 ,获得积分20
1分钟前
2分钟前
jiangmi完成签到,获得积分10
2分钟前
amy完成签到,获得积分10
2分钟前
2分钟前
陆康完成签到 ,获得积分10
3分钟前
香蕉觅云应助科研进化中采纳,获得10
3分钟前
3分钟前
bkagyin应助juaner采纳,获得10
4分钟前
Lin完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助pavonine采纳,获得10
4分钟前
王瑞发布了新的文献求助10
4分钟前
BNN1203381110发布了新的文献求助10
4分钟前
酷波er应助王瑞采纳,获得10
5分钟前
5分钟前
赘婿应助科研进化中采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529140
求助须知:如何正确求助?哪些是违规求助? 4618338
关于积分的说明 14562502
捐赠科研通 4557303
什么是DOI,文献DOI怎么找? 2497455
邀请新用户注册赠送积分活动 1477688
关于科研通互助平台的介绍 1449065