HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 哲学 语言学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sky123321完成签到,获得积分20
1秒前
追尾的猫发布了新的文献求助10
1秒前
1秒前
Notorious发布了新的文献求助30
2秒前
lyh应助momo采纳,获得10
2秒前
星辰大海应助infinity采纳,获得10
2秒前
Anderson732发布了新的文献求助10
2秒前
3秒前
研友_LN25rL发布了新的文献求助10
3秒前
雪莉完成签到 ,获得积分10
3秒前
大模型应助gyd采纳,获得10
3秒前
00小费0发布了新的文献求助10
5秒前
星辰大海应助剑影采纳,获得10
5秒前
5秒前
6秒前
王梦秋发布了新的文献求助10
6秒前
xiao双月发布了新的文献求助10
7秒前
贤惠的曼凝完成签到,获得积分10
7秒前
鱼跃发布了新的文献求助10
8秒前
传奇3应助抗氧剂采纳,获得10
8秒前
8秒前
8秒前
朴实的小懒虫完成签到,获得积分10
9秒前
hebishan完成签到,获得积分10
10秒前
cjchem发布了新的文献求助10
11秒前
无花果应助边走边听采纳,获得10
12秒前
12秒前
12秒前
无花果应助feifeifei采纳,获得10
12秒前
开放如天完成签到 ,获得积分10
13秒前
laber应助fangfeng采纳,获得50
13秒前
搜集达人应助三峡好人采纳,获得10
13秒前
13秒前
14秒前
852应助海上钢琴家采纳,获得10
14秒前
luo发布了新的文献求助10
14秒前
14秒前
大个应助追尾的猫采纳,获得10
15秒前
CodeCraft应助闪闪的大炮采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824