HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 语言学 哲学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助初野采纳,获得10
刚刚
1秒前
wjx发布了新的文献求助10
1秒前
1秒前
1秒前
大白包子李完成签到,获得积分10
2秒前
端庄的连碧完成签到 ,获得积分10
2秒前
葡萄炖雪梨完成签到 ,获得积分10
3秒前
4秒前
李健应助坚定柏柳采纳,获得10
4秒前
珂尔维特发布了新的文献求助10
4秒前
CodeCraft应助SGLY采纳,获得10
5秒前
一汪发布了新的文献求助10
6秒前
lzy完成签到,获得积分10
6秒前
6秒前
6秒前
TJY发布了新的文献求助10
6秒前
6秒前
srt完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
7秒前
7秒前
178181发布了新的文献求助10
8秒前
WFLLL发布了新的文献求助10
8秒前
煎bingo子完成签到,获得积分10
9秒前
Bmyndm完成签到 ,获得积分10
9秒前
无花果应助pine采纳,获得10
9秒前
9秒前
顺顺完成签到,获得积分10
10秒前
充电宝应助jcduoduo采纳,获得10
10秒前
10秒前
黑夜不黑夜呀完成签到,获得积分10
10秒前
kagami发布了新的文献求助10
11秒前
wenxiao发布了新的文献求助10
11秒前
12秒前
猪猪侠发布了新的文献求助10
12秒前
苦哈哈发布了新的文献求助10
13秒前
13秒前
烟花应助aganer采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059