HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 哲学 语言学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
左丘绝山发布了新的文献求助10
刚刚
2秒前
哒哒发布了新的文献求助10
3秒前
Lifel发布了新的文献求助20
4秒前
优秀的甜菜完成签到,获得积分10
4秒前
马美丽完成签到 ,获得积分10
5秒前
Tanya发布了新的文献求助10
5秒前
SciGPT应助Sunflower采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助小方采纳,获得10
7秒前
7秒前
9377应助Monkwy采纳,获得10
8秒前
科研通AI2S应助俏皮的龙猫采纳,获得10
8秒前
小马甲应助俏皮的龙猫采纳,获得10
8秒前
航_123应助左丘绝山采纳,获得10
8秒前
橙子发布了新的文献求助10
10秒前
jinyu完成签到,获得积分10
10秒前
12秒前
14秒前
15秒前
16秒前
胡慧婷发布了新的文献求助20
16秒前
Elizabeth12138完成签到 ,获得积分10
18秒前
东东发布了新的文献求助10
18秒前
共享精神应助momo采纳,获得10
19秒前
善学以致用应助王金娥采纳,获得10
20秒前
21秒前
充电宝应助AI采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
29秒前
爆米花应助苏苏采纳,获得10
31秒前
酷波er应助yaorongxia采纳,获得10
33秒前
Xiaojiu发布了新的文献求助10
33秒前
34秒前
36秒前
Heyouatpome完成签到,获得积分10
36秒前
36秒前
zou发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425513
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168510
捐赠科研通 4457109
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800