HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 语言学 哲学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助清脆蛋挞采纳,获得30
1秒前
无私尔风完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助50
2秒前
jiejie完成签到,获得积分10
2秒前
敏感的海雪完成签到 ,获得积分10
3秒前
在水一方应助张浩洋采纳,获得10
3秒前
ph0307发布了新的文献求助30
3秒前
3秒前
zhaojiantgu完成签到 ,获得积分10
4秒前
Tanxaio发布了新的文献求助10
4秒前
5秒前
努力游游完成签到,获得积分10
5秒前
专注的玉米完成签到,获得积分10
5秒前
敏感的海雪关注了科研通微信公众号
7秒前
感动梦岚发布了新的文献求助10
7秒前
8秒前
5t5发布了新的文献求助10
9秒前
星辰大海应助多情如容采纳,获得10
9秒前
9秒前
summitekey发布了新的文献求助10
10秒前
zeng发布了新的文献求助10
10秒前
DAdump1ing完成签到,获得积分10
11秒前
lllkkk发布了新的文献求助10
12秒前
13秒前
贝卓飞完成签到,获得积分10
13秒前
13秒前
zhou默完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
Akim应助lulu采纳,获得10
15秒前
15秒前
张浩洋发布了新的文献求助10
15秒前
斯文白梦完成签到,获得积分20
16秒前
16秒前
万能图书馆应助Tanxaio采纳,获得10
17秒前
小马甲应助sye采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070141
求助须知:如何正确求助?哪些是违规求助? 4291362
关于积分的说明 13370057
捐赠科研通 4111607
什么是DOI,文献DOI怎么找? 2251577
邀请新用户注册赠送积分活动 1256761
关于科研通互助平台的介绍 1189297