亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 人工智能 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:45
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到 ,获得积分10
38秒前
48秒前
55秒前
Lshyong完成签到 ,获得积分10
1分钟前
Mistletoe完成签到 ,获得积分10
1分钟前
zyjsunye完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
zhangxr发布了新的文献求助10
1分钟前
1分钟前
轮胎配方发布了新的文献求助10
2分钟前
小蘑菇应助风中的夕阳采纳,获得10
2分钟前
zhangxr完成签到,获得积分10
2分钟前
2分钟前
2分钟前
奶盐牙牙乐完成签到 ,获得积分10
3分钟前
3分钟前
L_MD完成签到,获得积分10
3分钟前
Yingkun_Xu发布了新的文献求助10
3分钟前
Yingkun_Xu完成签到,获得积分10
3分钟前
铁臂阿童木完成签到,获得积分10
3分钟前
句号完成签到 ,获得积分10
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
吴亦凡女朋友完成签到,获得积分10
4分钟前
4分钟前
ddddddd完成签到 ,获得积分10
4分钟前
5分钟前
张子捷应助吴亦凡女朋友采纳,获得10
5分钟前
5分钟前
5分钟前
犹豫芝麻应助偶尔打嗝儿采纳,获得10
5分钟前
5分钟前
Serendiply完成签到,获得积分10
5分钟前
uikymh完成签到 ,获得积分0
6分钟前
jjjjjjjjjjj发布了新的文献求助10
6分钟前
6分钟前
6分钟前
乐多完成签到,获得积分10
6分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899665
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142