HAM: Hybrid attention module in deep convolutional neural networks for image classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 频道(广播) 模式识别(心理学) 深度学习 计算机网络 哲学 语言学
作者
Guoqiang Li,Qi Fang,Linlin Zha,Xin Gao,Nenggan Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108785-108785 被引量:73
标识
DOI:10.1016/j.patcog.2022.108785
摘要

• Proposing an attention module: Hybrid Attention Module (HAM). • HAM can be embedded into any state-of-the-art CNN architectures. • HAM improve networks performance without significantly increasing parameters. • Compared with other state-of-the-art attention modules, HAM achieve better performance on the standard datasets. • On STL-10 datasets, HAM can further reduce the negative impact of less data on the performance as networks go deeper. Recently, many researches have demonstrated that the attention mechanism has great potential in improving the performance of deep convolutional neural networks (CNNs). However, the existing methods either ignore the importance of using channel attention and spatial attention mechanisms simultaneously or bring much additional model complexity. In order to achieve a balance between performance and model complexity, we propose the Hybrid Attention Module (HAM), a really lightweight yet efficient attention module. Given an intermediate feature map as the input feature, HAM firstly produces one channel attention map and one channel refined feature through the channel submodule, and then based on the channel attention map, the spatial submodule divides the channel refined feature into two groups along the channel axis to generate a pair of spatial attention descriptors. By applying saptial attention descriptors, the spatial submodule generates the final refined feature which can adaptively emphasize the important regions. Besides, HAM is a simple and general module, it can be embedded into various mainstream deep CNN architectures seamlessly and can be trained with base CNNs in the end-to-end way. We evaluate HAM through abundant of experiments on CIFAR-10, CIFAR-100 and STL-10 datasets. The experimental results show that HAM-integrated networks achieve accuracy improvements and further reduce the negative impact of less training data on deeper networks performance than its counterparts, which proves the effectiveness of HAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助尤诺采纳,获得10
刚刚
英姑应助合欢采纳,获得10
1秒前
哈哈完成签到,获得积分20
1秒前
cq发布了新的文献求助10
1秒前
2秒前
盏盏发布了新的文献求助10
2秒前
王伟完成签到,获得积分10
2秒前
隐形曼青应助芝士采纳,获得10
3秒前
毛毛发布了新的文献求助10
3秒前
嘎嘎发布了新的文献求助10
3秒前
领导范儿应助Hope采纳,获得10
4秒前
5秒前
认真以丹完成签到,获得积分10
5秒前
叶某还得学完成签到,获得积分10
5秒前
在水一方应助灵巧妙芙采纳,获得10
6秒前
LYD发布了新的文献求助10
6秒前
荔枝味西柚完成签到,获得积分10
6秒前
6秒前
浮游应助酸萝卜采纳,获得10
6秒前
6秒前
cyy完成签到,获得积分10
8秒前
8秒前
8秒前
lujin完成签到,获得积分10
8秒前
英姑应助小张采纳,获得10
9秒前
gaozx123发布了新的文献求助10
9秒前
微笑的冥幽完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
12秒前
零下保温杯完成签到,获得积分10
13秒前
liguang8完成签到,获得积分10
13秒前
苏暮雨发布了新的文献求助10
13秒前
13秒前
14秒前
科研不通发布了新的文献求助10
14秒前
所所应助cookangdavid采纳,获得10
15秒前
15秒前
善学以致用应助陈三更采纳,获得10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593