Dynamic stock-decision ensemble strategy based on deep reinforcement learning

强化学习 计算机科学 夏普比率 交易策略 文件夹 股票市场 人工智能 投资策略 库存(枪支) 运筹学 机器学习 计量经济学 微观经济学 经济 财务 利润(经济学) 古生物学 机械工程 工程类 生物
作者
Xiaoming Yu,Wenjun Wu,Xingchuang Liao,Yong Han
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (2): 2452-2470 被引量:7
标识
DOI:10.1007/s10489-022-03606-0
摘要

In a complex and changeable stock market, it is very important to design a trading agent that can benefit investors. In this paper, we propose two stock trading decision-making methods. First, we propose a nested reinforcement learning (Nested RL) method based on three deep reinforcement learning models (the Advantage Actor Critic, Deep Deterministic Policy Gradient, and Soft Actor Critic models) that adopts an integration strategy by nesting reinforcement learning on the basic decision-maker. Thus, this strategy can dynamically select agents according to the current situation to generate trading decisions made under different market environments. Second, to inherit the advantages of three basic decision-makers, we consider confidence and propose a weight random selection with confidence (WRSC) strategy. In this way, investors can gain more profits by integrating the advantages of all agents. All the algorithms are validated for the U.S., Japanese and British stocks and evaluated by different performance indicators. The experimental results show that the annualized return, cumulative return, and Sharpe ratio values of our ensemble strategy are higher than those of the baselines, which indicates that our nested RL and WRSC methods can assist investors in their portfolio management with more profits under the same level of investment risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助AKA采纳,获得10
3秒前
3秒前
Lucas应助大辉采纳,获得10
4秒前
4秒前
4秒前
slycmd发布了新的文献求助10
6秒前
上官若男应助bb采纳,获得10
7秒前
寒冷天亦发布了新的文献求助10
8秒前
白衣修身发布了新的文献求助10
8秒前
9秒前
壮观的夏蓉完成签到,获得积分0
10秒前
搜集达人应助如风采纳,获得10
11秒前
紫薇发布了新的文献求助10
11秒前
学吧发布了新的文献求助10
11秒前
CipherSage应助淡定茉莉采纳,获得10
11秒前
Ikaros完成签到,获得积分10
12秒前
晴空万里完成签到 ,获得积分10
13秒前
13秒前
14秒前
寒冷天亦完成签到,获得积分10
14秒前
sunoopp发布了新的文献求助10
16秒前
活泼的巧曼完成签到,获得积分10
17秒前
正直的蚂蚁完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
Yasmine完成签到 ,获得积分10
19秒前
bb发布了新的文献求助10
19秒前
19秒前
六尺巷发布了新的文献求助10
20秒前
21秒前
乔an发布了新的文献求助30
21秒前
21秒前
22秒前
bibi发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
古月完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548