Training and Interpreting Machine Learning Algorithms to Evaluate Fall Risk After Emergency Department Visits

机器学习 急诊科 人工智能 随机森林 阿达布思 介绍 需要治疗的数量 医学 接收机工作特性 算法 背景(考古学) 计算机科学 置信区间 物理疗法 相对风险 支持向量机 家庭医学 精神科 生物 内科学 古生物学
作者
Brian W. Patterson,Collin J. Engstrom,Varun Sah,Maureen A. Smith,Eneida A. Mendonça,Michael S. Pulia,Michael D. Repplinger,Azita G. Hamedani,David Page,Manish N. Shah
出处
期刊:Medical Care [Lippincott Williams & Wilkins]
卷期号:57 (7): 560-566 被引量:38
标识
DOI:10.1097/mlr.0000000000001140
摘要

Background: Machine learning is increasingly used for risk stratification in health care. Achieving accurate predictive models do not improve outcomes if they cannot be translated into efficacious intervention. Here we examine the potential utility of automated risk stratification and referral intervention to screen older adults for fall risk after emergency department (ED) visits. Objective: This study evaluated several machine learning methodologies for the creation of a risk stratification algorithm using electronic health record data and estimated the effects of a resultant intervention based on algorithm performance in test data. Methods: Data available at the time of ED discharge were retrospectively collected and separated into training and test datasets. Algorithms were developed to predict the outcome of a return visit for fall within 6 months of an ED index visit. Models included random forests, AdaBoost, and regression-based methods. We evaluated models both by the area under the receiver operating characteristic (ROC) curve, also referred to as area under the curve (AUC), and by projected clinical impact, estimating number needed to treat (NNT) and referrals per week for a fall risk intervention. Results: The random forest model achieved an AUC of 0.78, with slightly lower performance in regression-based models. Algorithms with similar performance, when evaluated by AUC, differed when placed into a clinical context with the defined task of estimated NNT in a real-world scenario. Conclusion: The ability to translate the results of our analysis to the potential tradeoff between referral numbers and NNT offers decisionmakers the ability to envision the effects of a proposed intervention before implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚鹊完成签到 ,获得积分10
刚刚
阿德利企鹅完成签到 ,获得积分10
1秒前
ding应助球球采纳,获得10
1秒前
3秒前
DJsky123发布了新的文献求助10
6秒前
文献分困户完成签到,获得积分10
7秒前
9秒前
zuoyou发布了新的文献求助10
9秒前
万能图书馆应助xaiolai采纳,获得10
9秒前
天天快乐应助111采纳,获得10
10秒前
平淡航空发布了新的文献求助10
10秒前
11秒前
12秒前
刘不器发布了新的文献求助10
12秒前
12秒前
俭朴夜香完成签到,获得积分10
12秒前
12秒前
12秒前
YUAN完成签到,获得积分10
14秒前
qyhd111发布了新的文献求助20
14秒前
扣脚盟完成签到 ,获得积分10
14秒前
赘婿应助憨憨医生采纳,获得10
15秒前
new完成签到,获得积分10
15秒前
15秒前
平淡航空完成签到,获得积分20
16秒前
周大仙完成签到,获得积分10
16秒前
16秒前
17秒前
虚幻秋珊完成签到 ,获得积分10
17秒前
施小雨发布了新的文献求助10
17秒前
乔杰发布了新的文献求助10
18秒前
王桃矢发布了新的文献求助10
18秒前
积极的霸完成签到,获得积分10
18秒前
18秒前
朴素的从寒关注了科研通微信公众号
19秒前
19秒前
周大仙发布了新的文献求助10
20秒前
思有完成签到,获得积分10
21秒前
橙浅发布了新的文献求助10
21秒前
黄鱼完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Grassroots Governance in China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3694623
求助须知:如何正确求助?哪些是违规求助? 3246088
关于积分的说明 9848662
捐赠科研通 2957793
什么是DOI,文献DOI怎么找? 1621741
邀请新用户注册赠送积分活动 767354
科研通“疑难数据库(出版商)”最低求助积分说明 741120