已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Training and Interpreting Machine Learning Algorithms to Evaluate Fall Risk After Emergency Department Visits

机器学习 急诊科 人工智能 随机森林 阿达布思 介绍 需要治疗的数量 医学 接收机工作特性 算法 背景(考古学) 计算机科学 置信区间 物理疗法 相对风险 支持向量机 家庭医学 精神科 生物 内科学 古生物学
作者
Brian W. Patterson,Collin J. Engstrom,Varun Sah,Maureen A. Smith,Eneida A. Mendonça,Michael S. Pulia,Michael D. Repplinger,Azita G. Hamedani,David Page,Manish N. Shah
出处
期刊:Medical Care [Lippincott Williams & Wilkins]
卷期号:57 (7): 560-566 被引量:38
标识
DOI:10.1097/mlr.0000000000001140
摘要

Background: Machine learning is increasingly used for risk stratification in health care. Achieving accurate predictive models do not improve outcomes if they cannot be translated into efficacious intervention. Here we examine the potential utility of automated risk stratification and referral intervention to screen older adults for fall risk after emergency department (ED) visits. Objective: This study evaluated several machine learning methodologies for the creation of a risk stratification algorithm using electronic health record data and estimated the effects of a resultant intervention based on algorithm performance in test data. Methods: Data available at the time of ED discharge were retrospectively collected and separated into training and test datasets. Algorithms were developed to predict the outcome of a return visit for fall within 6 months of an ED index visit. Models included random forests, AdaBoost, and regression-based methods. We evaluated models both by the area under the receiver operating characteristic (ROC) curve, also referred to as area under the curve (AUC), and by projected clinical impact, estimating number needed to treat (NNT) and referrals per week for a fall risk intervention. Results: The random forest model achieved an AUC of 0.78, with slightly lower performance in regression-based models. Algorithms with similar performance, when evaluated by AUC, differed when placed into a clinical context with the defined task of estimated NNT in a real-world scenario. Conclusion: The ability to translate the results of our analysis to the potential tradeoff between referral numbers and NNT offers decisionmakers the ability to envision the effects of a proposed intervention before implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
语冰完成签到,获得积分10
4秒前
大气小天鹅完成签到 ,获得积分10
5秒前
今后应助炙热书白采纳,获得10
5秒前
6秒前
松间蓝雾完成签到,获得积分10
8秒前
10秒前
Luke完成签到,获得积分10
11秒前
追忆应助KDS采纳,获得10
15秒前
平常的芝麻完成签到,获得积分10
15秒前
尾号6533发布了新的文献求助10
15秒前
HughWang完成签到,获得积分10
15秒前
YOLO完成签到 ,获得积分10
15秒前
16秒前
huanger完成签到,获得积分10
16秒前
林夕完成签到 ,获得积分10
19秒前
liulu完成签到 ,获得积分10
20秒前
炙热书白发布了新的文献求助10
22秒前
天天快乐应助xiaomu采纳,获得10
24秒前
超级如风完成签到 ,获得积分10
25秒前
追忆应助松间蓝雾采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
quhayley应助熬夜的小王采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
34秒前
Rondab应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
依依发布了新的文献求助10
34秒前
echo完成签到 ,获得积分10
34秒前
冰子完成签到 ,获得积分10
37秒前
38秒前
研友_5Y9Z75完成签到 ,获得积分0
40秒前
43秒前
sansronds完成签到,获得积分10
46秒前
冷静如松完成签到 ,获得积分10
47秒前
yu发布了新的文献求助10
48秒前
小绵羊应助依依采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234