Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet

材料科学 聚合物 转化(遗传学) 形状记忆聚合物 复合材料 纳米技术 化学工程 生物化学 基因 工程类 化学
作者
Shuwei Wang,Li Guo,Zhao‐Tie Liu,Zhong‐Wen Liu,Jinqiang Jiang,Yue Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (33): 30308-30316 被引量:8
标识
DOI:10.1021/acsami.9b10071
摘要

Shape transformation of polymeric materials, including hydrogels, liquid crystalline, and semicrystalline polymers, can be realized by exposing the shape-changing materials to the effect of a variety of stimuli such as temperature, light, pH, and magnetic and electric fields. Herein, we demonstrate a novel and different approach that allows a flat sheet or strip of a polymer to transform into a predesigned 3D shape or structure by simply stretching the polymer at room temperature and then releasing it from the external stress, that is, a 2D-to-3D shape change is activated by mechanical deformation under ambient conditions. This particular type of stimuli-controlled shape-changing polymers is based on suppressing plastic deformation in selected regions of the flat polymer sheet prior to stretching and release. We validated the design principle by using a polymer blend composed of poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and tannic acid (TA) whose plastic deformation can be locally inhibited by surface treatment using an aqueous solution of copper sulfate pentahydrate (Cu2+ ink) that cross-links PAA chains through a Cu2+-carboxylate coordination and, consequently, increases the material's Young's modulus and yield strength. After room temperature stretching and release, elastic deformation in the Cu2+ ink-treated regions leads to 3D shape transformation that is controlled by the patterned surface treatment. This facile and effective "stretch-and-release" approach widens the scope of preparation and application for shape-changing polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉羿完成签到,获得积分20
刚刚
ppp发布了新的文献求助10
1秒前
MingQue完成签到,获得积分10
1秒前
摆烂的星河完成签到,获得积分10
2秒前
舒心的耷完成签到,获得积分10
3秒前
干净之卉发布了新的文献求助10
3秒前
huang完成签到,获得积分10
3秒前
3秒前
水123发布了新的文献求助10
4秒前
英俊的铭应助foxp3采纳,获得10
4秒前
mimoma完成签到,获得积分10
5秒前
折耳根完成签到,获得积分10
5秒前
6秒前
桐桐应助玥来玥好采纳,获得10
6秒前
两碗牛又面完成签到,获得积分10
6秒前
深情的友易完成签到,获得积分10
6秒前
含蓄元冬发布了新的文献求助10
7秒前
szy完成签到,获得积分10
8秒前
lilyyun1990发布了新的文献求助10
9秒前
从容芮应助niu采纳,获得10
9秒前
fff完成签到,获得积分10
10秒前
juzi完成签到,获得积分20
10秒前
JamesPei应助米斯特刘采纳,获得10
10秒前
情怀应助biosep采纳,获得10
10秒前
慕容雅柏完成签到 ,获得积分10
10秒前
Ship完成签到,获得积分10
10秒前
Accepted完成签到,获得积分10
11秒前
辞树完成签到,获得积分10
11秒前
柚子皮完成签到,获得积分10
11秒前
慕青应助大美女采纳,获得10
13秒前
14秒前
terrell完成签到,获得积分10
15秒前
Inter09完成签到,获得积分10
15秒前
乐乐应助lilyyun1990采纳,获得10
16秒前
记忆完成签到,获得积分10
16秒前
Yi完成签到 ,获得积分10
16秒前
supertkeb完成签到,获得积分10
17秒前
李健应助含蓄元冬采纳,获得10
18秒前
19秒前
RBT完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311429
求助须知:如何正确求助?哪些是违规求助? 2944201
关于积分的说明 8517847
捐赠科研通 2619545
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649869