已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Updating of structural multi-scale monitoring model based on multi-objective optimisation

克里金 计算机科学 数学优化 比例(比率) 替代模型 插值(计算机图形学) 算法 结构健康监测 集合(抽象数据类型) 数据挖掘 数学 机器学习 工程类 人工智能 运动(物理) 物理 结构工程 量子力学 程序设计语言
作者
Yan Cui,Wei Lu,Jun Teng
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
卷期号:22 (5): 1073-1088 被引量:5
标识
DOI:10.1177/1369433218805235
摘要

Structural safety assessments are implemented based on measured data, but the limited number of sensors restricts the comprehensive acquisition of response information in large complex structures. A concurrent multi-scale model utilises global and local simulation characteristics to expand the insufficient measured data. Thus, good global and local simulation capability is necessary for structural health monitoring-oriented multi-scale model, and the updating of this monitoring model needs to consider the multi-type responses that are obtained from different structural scales. However, the existing methods usually integrate multi-type responses into a single-objective function, which cannot ensure the acquisition of the optimal parameters. Moreover, in common parameter screening method, the perturbation and threshold are set artificially, which causes a strong subjectivity, and the common polynomial response surface fits poorly for highly non-linear problem. Therefore, an updating method of the structural multi-scale monitoring model based on multi-objective optimisation is proposed. For the proposed method, a variance analysis based on the orthogonal experimental design is used to screen the unique significant influence parameters. The Kriging spatial interpolation technique is used to establish the approximate surrogate model between the response and its corresponding influence parameters. Simultaneously, the responses obtained from the global and local structural scales are used to define the sub-objectives of the multi-objective function vector in order to avoid the introduction of weight coefficients. Then, the multi-objective optimisation algorithm NSGA-II is used to obtain the optimal parameter values and realise the comprehensive updating of the initial multi-scale monitoring model. Finally, based on the health monitoring system of the large shell structure of the Zhuhai Opera House, the initial multi-scale monitoring model is updated using the proposed method. The structural dynamic characteristics and local stress obtained from the initial model, updated model and the real structure are compared to validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HoHo发布了新的文献求助10
1秒前
Oracle应助沐风采纳,获得20
4秒前
5秒前
知了发布了新的文献求助10
8秒前
开放的黑猫完成签到,获得积分20
8秒前
科研通AI5应助大力的绝悟采纳,获得10
9秒前
10秒前
14秒前
14秒前
英勇的婷子完成签到,获得积分10
17秒前
HoHo完成签到 ,获得积分10
17秒前
oo发布了新的文献求助10
17秒前
20秒前
大力的书南完成签到,获得积分10
21秒前
21秒前
科研通AI5应助ceicic采纳,获得10
24秒前
24秒前
lzsz2021发布了新的文献求助10
25秒前
WUYONGSHUAI发布了新的文献求助100
26秒前
可爱的函函应助罐装采纳,获得10
27秒前
9999发布了新的文献求助100
27秒前
wangyi发布了新的文献求助10
30秒前
31秒前
善学以致用应助jia采纳,获得10
32秒前
echopussy应助蓝桉采纳,获得10
33秒前
35秒前
爆米花应助A3000采纳,获得10
36秒前
36秒前
jia完成签到,获得积分20
36秒前
37秒前
9999完成签到,获得积分10
38秒前
39秒前
今后应助丢丢在吗采纳,获得10
39秒前
ceicic发布了新的文献求助10
40秒前
小白完成签到,获得积分10
40秒前
oo完成签到,获得积分10
41秒前
zzz发布了新的文献求助10
44秒前
望仔牛奶发布了新的文献求助10
45秒前
赘婿应助WUYONGSHUAI采纳,获得15
47秒前
8R60d8应助科研通管家采纳,获得10
50秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725119
求助须知:如何正确求助?哪些是违规求助? 3270218
关于积分的说明 9965062
捐赠科研通 2985172
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747164