双极扩散
材料科学
跨导
调制(音乐)
光电子学
石墨烯
晶体管
纳米技术
异质结
场效应晶体管
半导体
电压
电气工程
物理
电子
量子力学
工程类
声学
作者
Ruiqing Cheng,Lei Yin,Feng Wang,Zhenxing Wang,Junjun Wang,Yao Wen,Wenhao Huang,Marshet Getaye Sendeku,Liping Feng,Yufang Liu,Jun He
标识
DOI:10.1002/adma.201901144
摘要
Van der Waals materials and their heterostructures provide a versatile platform to explore new device architectures and functionalities beyond conventional semiconductors. Of particular interest is anti-ambipolar behavior, which holds potentials for various digital electronic applications. However, most of the previously conducted studies are focused on hetero- or homo- p-n junctions, which suffer from a weak electrical modulation. Here, the anti-ambipolar transport behavior and negative transconductance of MoTe2 transistors are reported using a graphene/h-BN floating-gate structure to dynamically modulate the conduction polarity. Due to the asymmetric electrical field regulating effect on the recombination and diffusion currents, the anti-ambipolar transport and negative transconductance feature can be systematically controlled. Consequently, the device shows an unprecedented peak resistance modulation factor (≈5 × 103 ), and effective photoexcitation modulation with distinct threshold voltage shift and large photo on/off ratio (≈104 ). Utilizing this large modulation effect, the voltage-transfer characteristics of an inverter circuit variant are further studied and its applications in Schmitt triggers and multivalue output are further explored. These properties, in addition to their proven nonvolatile storage, suggest that such 2D heterostructured devices display promising perspectives toward future logic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI