A Survey on Chatbot Implementation in Customer Service Industry through Deep Neural Networks

聊天机器人 计算机科学 人工智能 对话 深度学习 服务(商务) 人工神经网络 情绪分析 任务(项目管理) 机器学习 数据科学 工程类 系统工程 哲学 语言学 经济 经济
作者
Mohammad Nuruzzaman,Omar Khadeer Hussain
标识
DOI:10.1109/icebe.2018.00019
摘要

Nowadays it is the era of intelligent machine. With the advancement of artificial intelligent, machine learning and deep learning, machines have started to impersonate as human. Conversational software agents activated by natural language processing is known as chatbot, are an excellent example of such machine. This paper presents a survey on existing chatbots and techniques applied into it. It discusses the similarities, differences and limitations of the existing chatbots. We compared 11 most popular chatbot application systems along with functionalities and technical specifications. Research showed that nearly 75% of customers have experienced poor customer service and generation of meaningful, long and informative responses remains a challenging task. In the past, methods for developing chatbots have relied on hand-written rules and templates. With the rise of deep learning these models were quickly replaced by end-to-end neural networks. More specifically, Deep Neural Networks is a powerful generative-based model to solve the conversational response generation problems. This paper conducted an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 5 years. Based on literature review, this study made a comparison from selected papers according to method adopted. This paper also presented why current chatbot models fails to take into account when generating responses and how this affects the quality conversation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助DDTT采纳,获得10
1秒前
2秒前
2秒前
青争鱼发布了新的文献求助10
4秒前
健忘的高跟鞋完成签到,获得积分10
5秒前
小僧发布了新的文献求助10
5秒前
小言完成签到,获得积分10
7秒前
7秒前
9秒前
人间惊鸿完成签到,获得积分10
10秒前
ding应助最专业采纳,获得10
11秒前
11秒前
英姑应助Sir.采纳,获得10
12秒前
有人就有恩怨完成签到,获得积分10
13秒前
坦率的云朵完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助李昕123采纳,获得10
13秒前
小僧完成签到,获得积分10
14秒前
刚刚发布了新的文献求助10
14秒前
地方完成签到 ,获得积分10
14秒前
姜灭绝完成签到,获得积分10
15秒前
小言发布了新的文献求助10
15秒前
zsp完成签到,获得积分10
16秒前
Min完成签到,获得积分10
16秒前
猪猪hero应助傢誠采纳,获得10
17秒前
17秒前
阿连完成签到,获得积分10
17秒前
隐形曼青应助Sally采纳,获得10
17秒前
xiaoQ完成签到,获得积分20
18秒前
zgsn完成签到,获得积分10
18秒前
熹微发布了新的文献求助10
19秒前
HEROTREE发布了新的文献求助10
20秒前
20秒前
orixero应助bie123采纳,获得10
21秒前
我是老大应助勤劳乘云采纳,获得10
25秒前
执着完成签到,获得积分10
25秒前
忘课文完成签到 ,获得积分10
25秒前
29秒前
32秒前
kuzzi发布了新的文献求助30
33秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383656
求助须知:如何正确求助?哪些是违规求助? 2997848
关于积分的说明 8776717
捐赠科研通 2683417
什么是DOI,文献DOI怎么找? 1469660
科研通“疑难数据库(出版商)”最低求助积分说明 679488
邀请新用户注册赠送积分活动 671775