An Optimization Model for UAV Inspection Path of Oil and Gas Pipeline Network

管道(软件) 整数规划 计算机科学 下游(制造业) 上游(联网) 可靠性(半导体) 管道运输 路径(计算) 线性规划 可靠性工程 工程类 运营管理 计算机网络 功率(物理) 物理 算法 量子力学 环境工程 程序设计语言
作者
Yamin Yan,Haoran Zhang,Zhang Wan,Bohong Wang,Qi Liao,Yongtu Liang
出处
期刊:Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining 被引量:2
标识
DOI:10.1115/ipc2018-78171
摘要

Currently, the oil and gas pipeline network is a key link in the coordinated development of oil and gas upstream and downstream cohesion. To ensure the reliability and safety of oil and gas pipeline network operation, it is necessary to inspect the pipeline periodically to minimize the risk of leakage, spill and theft, as well as documenting actual incidents and the effects on the environment. Traditional manpower inspection is extremely labor-intensive and inefficient. Through the use of UAV (unmanned aerial vehicle) inspection, it is possible to greatly increase efficiencies by reducing the amount of manpower and resources required by traditional inspection methods. The integrated optimization for UAV inspection path of oil and gas pipeline networks, including physical feasibility, performance of mission, cooperation, real-time implementation, three-dimensional (3-D) space, et al, is a strategic problem due to its large-scale and complexity. Aimed at improving inspection efficiency and maximizing economic benefits, this paper proposes a novel mix-integer linear programming model which could be used for inspection path planning. Minimizing the total inspection time is the objective function of this model. The constraints of the mission scenario and the safety performance of UAV are taken into account. By using evolutionary genetic algorithm, each candidate route can be measured through the evaluation function that takes into account the cost of the route, the mission scenario as well as the cooperative and coordinative requirements among the unmanned aerial vehicles constraints. Finally, the proposed approach is applied to a virtual oil and gas pipeline network. Compared with the traditional inspection approach, the proposed method is 66.48% less in inspection cost and 22.07% shorter in total inspection time, verifying the rationality and superiority of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小伟发布了新的文献求助10
刚刚
fap完成签到,获得积分10
4秒前
4秒前
awu发布了新的文献求助20
4秒前
xxaqs完成签到,获得积分10
6秒前
田小胖发布了新的文献求助10
7秒前
热情诗云完成签到,获得积分10
8秒前
Brian_Fang完成签到,获得积分10
9秒前
9秒前
10秒前
pxy完成签到,获得积分10
10秒前
李健的小迷弟应助eason采纳,获得10
10秒前
羿_liu应助Ma采纳,获得10
12秒前
13秒前
桐桐应助Ternura采纳,获得10
14秒前
14秒前
热情诗云发布了新的文献求助10
15秒前
16秒前
ffff应助小萌猫采纳,获得10
17秒前
Anyemzl发布了新的文献求助10
18秒前
19秒前
chenjindun发布了新的文献求助10
20秒前
隐形曼青应助公司VV采纳,获得10
20秒前
Jasper应助zty采纳,获得30
22秒前
23秒前
薰硝壤应助过分动真采纳,获得10
23秒前
NexusExplorer应助超A采纳,获得10
24秒前
27秒前
28秒前
30秒前
eason发布了新的文献求助10
30秒前
32秒前
33秒前
鸣隐发布了新的文献求助10
33秒前
可爱的函函应助Tjn采纳,获得10
35秒前
36秒前
超A发布了新的文献求助10
36秒前
lcx发布了新的文献求助20
36秒前
eason完成签到,获得积分10
37秒前
田小胖完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464