An Optimization Model for UAV Inspection Path of Oil and Gas Pipeline Network

管道(软件) 整数规划 计算机科学 下游(制造业) 上游(联网) 可靠性(半导体) 管道运输 路径(计算) 线性规划 可靠性工程 工程类 运营管理 计算机网络 功率(物理) 物理 环境工程 程序设计语言 量子力学 算法
作者
Yamin Yan,Haoran Zhang,Zhang Wan,Bohong Wang,Qi Liao,Yongtu Liang
出处
期刊:Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining 被引量:2
标识
DOI:10.1115/ipc2018-78171
摘要

Currently, the oil and gas pipeline network is a key link in the coordinated development of oil and gas upstream and downstream cohesion. To ensure the reliability and safety of oil and gas pipeline network operation, it is necessary to inspect the pipeline periodically to minimize the risk of leakage, spill and theft, as well as documenting actual incidents and the effects on the environment. Traditional manpower inspection is extremely labor-intensive and inefficient. Through the use of UAV (unmanned aerial vehicle) inspection, it is possible to greatly increase efficiencies by reducing the amount of manpower and resources required by traditional inspection methods. The integrated optimization for UAV inspection path of oil and gas pipeline networks, including physical feasibility, performance of mission, cooperation, real-time implementation, three-dimensional (3-D) space, et al, is a strategic problem due to its large-scale and complexity. Aimed at improving inspection efficiency and maximizing economic benefits, this paper proposes a novel mix-integer linear programming model which could be used for inspection path planning. Minimizing the total inspection time is the objective function of this model. The constraints of the mission scenario and the safety performance of UAV are taken into account. By using evolutionary genetic algorithm, each candidate route can be measured through the evaluation function that takes into account the cost of the route, the mission scenario as well as the cooperative and coordinative requirements among the unmanned aerial vehicles constraints. Finally, the proposed approach is applied to a virtual oil and gas pipeline network. Compared with the traditional inspection approach, the proposed method is 66.48% less in inspection cost and 22.07% shorter in total inspection time, verifying the rationality and superiority of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜甜圈发布了新的文献求助10
刚刚
lz完成签到 ,获得积分10
刚刚
CHEN完成签到 ,获得积分10
刚刚
竹简完成签到,获得积分10
刚刚
无私的颤完成签到,获得积分10
1秒前
xiaoshoujun完成签到,获得积分10
1秒前
老实向雁应助liliflower采纳,获得10
1秒前
2秒前
2秒前
2秒前
我是波少完成签到,获得积分10
2秒前
小橘子完成签到 ,获得积分10
3秒前
4秒前
4秒前
花花完成签到,获得积分10
4秒前
幸运的靖柔完成签到,获得积分10
4秒前
iNk应助布丁采纳,获得20
5秒前
5秒前
5秒前
落后紫夏完成签到,获得积分10
5秒前
彭于晏应助1111采纳,获得10
5秒前
wen发布了新的文献求助10
5秒前
li完成签到,获得积分10
6秒前
火火完成签到,获得积分10
6秒前
祭礼之龙完成签到,获得积分10
6秒前
青黄应助七柚采纳,获得20
6秒前
7秒前
甜馨发布了新的文献求助10
7秒前
wx发布了新的文献求助10
8秒前
yyygc完成签到,获得积分10
8秒前
123456发布了新的文献求助10
8秒前
lei发布了新的文献求助10
8秒前
小王发布了新的文献求助10
9秒前
9秒前
打打应助lin采纳,获得10
9秒前
cells关注了科研通微信公众号
10秒前
津海007发布了新的文献求助10
10秒前
波波完成签到 ,获得积分10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060