摘要
The arrival of the big data era has driven the rapid development of high-speed optical signaling and processing, ranging from long-haul optical communication links to short-reach data centers and high-performance computing, and even micro-/nano-scale inter-chip and intra-chip optical interconnects. On-chip photonic signaling is essential for optical data transmission, especially for chip-scale optical interconnects, while on-chip photonic processing is a critical technology for optical data manipulation or processing, especially at the network nodes to facilitate ultracompact data management with low power consumption. In this paper, we review recent research progress in on-chip photonic signaling and processing on silicon photonics platforms. Firstly, basic key devices (lasers, modulators, detectors) are introduced. Secondly, for on-chip photonic signaling, we present recent works on on-chip data transmission of advanced multi-level modulation signals using various silicon photonic integrated devices (microring, slot waveguide, hybrid plasmonic waveguide, subwavelength grating slot waveguide). Thirdly, for on-chip photonic processing, we summarize recent works on on-chip data processing of advanced multi-level modulation signals exploiting linear and nonlinear effects in different kinds of silicon photonic integrated devices (strip waveguide, directional coupler, 2D grating coupler, microring, silicon-organic hybrid slot waveguide). Various photonic processing functions are demonstrated, such as photonic switch, filtering, polarization/wavelength/mode (de)multiplexing, wavelength conversion, signal regeneration, optical logic and computing. Additionally, we also introduce extended silicon+ photonics and show recent works on on-chip graphene-silicon photonic signal processing. The advances in on-chip silicon photonic signaling and processing with favorable performance pave the way to integrate complete optical communication systems on a monolithic chip and integrate silicon photonics and silicon nanoelectronics on a chip. It is believed that silicon photonics will enable more and more emerging advanced applications even beyond silicon photonic signaling and processing.