多硫化物
材料科学
异质结
催化作用
锂(药物)
硫黄
吸附
电导率
纳米技术
无机化学
化学工程
电极
光电子学
电解质
冶金
化学
有机化学
物理化学
内分泌学
工程类
医学
作者
Long Jiao,Chen Zhang,Chuannan Geng,Shichao Wu,Huan Li,Wei Lv,Ying Tao,Zijin Chen,Guangmin Zhou,Jia Li,Guowei Ling,Ying Wan,Quan‐Hong Yang
标识
DOI:10.1002/aenm.201900219
摘要
Abstract The detrimental shuttle effect in lithium–sulfur batteries mainly results from the mobility of soluble polysulfide intermediates and their sluggish conversion kinetics. Herein, presented is a multifunctional catalyst with the merits of strong polysulfides adsorption ability, superior polysulfides conversion activity, high specific surface area, and electron conductivity by in situ crafting of the TiO 2 ‐MXene (Ti 3 C 2 T x ) heterostructures. The uniformly distributed TiO 2 on MXene sheets act as capturing centers to immobilize polysulfides, the hetero‐interface ensures rapid diffusion of anchored polysulfides from TiO 2 to MXene, and the oxygen‐terminated MXene surface is endowed with high catalytic activity toward polysulfide conversion. The improved lithium–sulfur batteries deliver 800 mAh g −1 at 2 C and an ultralow capacity decay of 0.028% per cycle over 1000 cycles at 2 C. Even with a high sulfur loading of 5.1 mg cm −2 , the capacity retention of 93% after 200 cycles is still maintained. This work sheds new insights into the design of high‐performance catalysts with manipulated chemical components and tailored surface chemistry to regulate polysulfides in Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI