Machine learning and human capital complementarities: Experimental evidence on bias mitigation

人力资本 生产力 背景(考古学) 补语(音乐) 领域(数学分析) 产业组织 计算机科学 经济 酿造的 知识管理 人工智能 宏观经济学 表型 互补 化学 考古 古生物学 数学分析 基因 历史 生物 生物化学 经济增长 数学
作者
Prithwiraj Choudhury,Evan Starr,Rajshree Agarwal
出处
期刊:Strategic Management Journal [Wiley]
卷期号:41 (8): 1381-1411 被引量:141
标识
DOI:10.1002/smj.3152
摘要

Abstract Research Summary The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic behavior by agents. We theorize that domain expertise of users can complement ML by mitigating this bias. Our observational and experimental analyses in the patent examination context support this conjecture. In the face of “input incompleteness,” we find ML is biased toward finding prior art textually similar to focal claims and domain expertise is needed to find the most relevant prior art. We also document the importance of vintage‐specific skills, and discuss the implications for artificial intelligence and strategic management of human capital. Managerial Summary Unleashing the productivity benefits of machine learning (ML) technologies in the future of work requires managers to pay careful attention to mitigating potential biases from its use. One such bias occurs when there is input incompleteness to the ML tool, potentially because agents strategically provide information that may benefit them. We demonstrate that in such circumstances, ML tools can make worse predictions than the prior technology vintages. To ensure productivity benefits of ML in light of potentially strategic inputs, our research suggests that managers need to consider two attributes of human capital—domain expertise and vintage‐specific skills. Domain expertise complements ML by correcting for the (strategic) incompleteness of the input to the ML tool, while vintage‐specific skills ensure the ability to properly operate the technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的绿柳完成签到,获得积分10
刚刚
万叶发布了新的文献求助10
2秒前
haofan17完成签到,获得积分0
2秒前
YY发布了新的文献求助30
2秒前
Shaynin完成签到,获得积分10
3秒前
充电宝应助fanli采纳,获得10
3秒前
XXXX完成签到,获得积分10
4秒前
发顶刊完成签到,获得积分10
4秒前
小二郎应助少年弦采纳,获得10
4秒前
weiyu发布了新的文献求助10
5秒前
wangbq完成签到 ,获得积分10
5秒前
6秒前
Swim完成签到,获得积分20
7秒前
丘比特应助邵晓啸采纳,获得20
9秒前
科研通AI2S应助发顶刊采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
好运来应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
知许解夏应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
李爱国应助科研通管家采纳,获得30
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
lee发布了新的文献求助10
12秒前
leodu完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388