Analog-to-Digital Conversion With Reconfigurable Function Mapping for Neural Networks Activation Function Acceleration

计算机科学 激活函数 人工神经网络 加速度 水准点(测量) 电子工程 多路复用 灵活性(工程) 计算机硬件 计算机工程 嵌入式系统 人工智能 工程类 数学 物理 经典力学 电信 统计 大地测量学 地理
作者
Massimo Giordano,Giorgio Cristiano,Koji Ishibashi,Stefano Ambrogio,Hsinyu Tsai,Geoffrey W. Burr,Pritish Narayanan
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 367-376 被引量:24
标识
DOI:10.1109/jetcas.2019.2911537
摘要

Hardware acceleration of deep neural networks (DNNs) using non-volatile memory arrays has the potential to achieve orders of magnitude power and performance benefits versus digital von-Neumann architectures by implementing the critical multiply-accumulate operations at the location of the weight data. However, realizing these system-level improvements requires careful consideration of the circuit design tradeoffs involved. For instance, neuron circuitry at the periphery, in addition to accumulating current and having mechanisms for routing, must also implement a non-linear activation function (for forward propagate) or a derivative (for reverse propagate). While it is possible to do this with analog-to-digital converters (ADCs) followed by digital arithmetic circuitry, this approach is powerhungry, suffers from undersampling, and could occupy a large area footprint. These large circuit blocks may therefore need to be time-multiplexed across multiple neurons, reducing the overall parallelism and diminishing the performance benefits. In this paper, we propose a new function mapping ADC that directly implements non-linear functions as a part of the process of conversion into the digital domain. The design is applicable to both inference and training, since it is capable of implementing both the activation function and its derivative using the same hardware. It is capable of fast and parallel conversion across all neuron values, while also being flexible and reconfigurable. We describe the design, followed by detailed circuit-level simulations demonstrating the viability and flexibility of the approach and quantifying the power and performance numbers. The simulation results show a total conversion time of 207 ns for 512 neurons in parallel, while the total energy consumption is found to be 9.95 nJ, which corresponds to 19.4 pJ per neuron.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助fz采纳,获得10
刚刚
十七应助LN采纳,获得10
1秒前
仵一发布了新的文献求助10
2秒前
大强发布了新的文献求助10
2秒前
Paopaoxuan应助学术草履虫采纳,获得10
2秒前
Albert发布了新的文献求助100
3秒前
天真雨南发布了新的文献求助10
4秒前
乐乐应助魔幻的丹秋采纳,获得10
5秒前
Dawn2000发布了新的文献求助10
5秒前
6秒前
绿眼虫发布了新的文献求助10
6秒前
7秒前
小陈爱涂六神完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
充电宝应助可爱星星采纳,获得10
10秒前
zzzwwwkkk发布了新的文献求助10
10秒前
Gyzzz发布了新的文献求助10
11秒前
张涛完成签到 ,获得积分10
11秒前
劲秉应助hhhhhhhhhao采纳,获得200
11秒前
李嘿嘿应助100采纳,获得10
11秒前
三木发布了新的文献求助10
13秒前
13秒前
FashionBoy应助cruise采纳,获得10
13秒前
天真雨南完成签到,获得积分20
14秒前
14秒前
Akim应助elever11采纳,获得10
14秒前
15秒前
魔幻山芙完成签到,获得积分10
15秒前
可爱的函函应助tong童采纳,获得10
15秒前
乐观的莆完成签到,获得积分10
15秒前
搜集达人应助ZRDJ采纳,获得10
16秒前
不懂事的小屁孩儿完成签到 ,获得积分10
16秒前
SciGPT应助CChi0923采纳,获得10
16秒前
17秒前
zzzwwwkkk完成签到,获得积分10
17秒前
18秒前
CodeCraft应助噜啦啦啦采纳,获得10
19秒前
qin完成签到 ,获得积分20
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147