Identification of Endocrine Disruptor Biodegradation by Integration of Structure–activity Relationship with Pathway Analysis

生物降解 小桶 化学 内分泌干扰物 双酚A 化学空间 计算生物学 环境化学 转录组 生物化学 生物 基因 内分泌系统 药物发现 有机化学 基因表达 激素 环氧树脂
作者
Tadashi Kadowaki,Craig E. Wheelock,Tetsuya Adachi,Taku Kudo,Shinobu Okamoto,Nobuya Tanaka,Koichiro Tonomura,Gozoh Tsujimoto,Hiroshi Mamitsuka,Susumu Goto,Minoru Kanehisa
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:41 (23): 7997-8003 被引量:13
标识
DOI:10.1021/es062751s
摘要

We present a SAR method that can predict estrogen-like endocrine disrupting chemical (EDC) activity as well as key biodegradation steps for detoxification. This method is based on a recent graph-mining algorithm developed by Kudo et al., which generates a set of descriptors from all potent chemical fragments (including rings). This method is novel in that it achieves chemical diversity in the training data set by sampling another data set of larger diversity. The model achieved an 83% accuracy prediction rate, and identified 1291 EDC candidates from the KEGG database. From this set of candidate compounds, bisphenol A was chosen for assay validation and biodegradation pathway analysis. Results showed that bisphenol A exhibited estrogen-like activity and was degraded in three distinct reactions. The prediction model provided information on the mechanism of the ligand-target binding, such as key functional groups involved. We focused on the enzyme commission number, which is useful for analyses of biodegradation pathways. Results identified oxygenases, ether hydrolases, and carbon-halide lyases as being important in the biodegradation pathway. This combined approach provided new information regarding the biodegradation of EDCs, and can potentially be extended to applications with transcriptomic, proteomic, and metabolomic data to provide a quick screen of biological activity and biodegradation pathway(s).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学学术术小小白白完成签到,获得积分10
1秒前
Bravejjq完成签到 ,获得积分10
1秒前
李健的小迷弟应助十言采纳,获得10
3秒前
Soxiar完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Lucas应助小巧问柳采纳,获得30
7秒前
李健应助俭朴涫采纳,获得10
7秒前
乐多发布了新的文献求助10
10秒前
Ava应助粗暴的世倌采纳,获得10
12秒前
12秒前
13秒前
巫马尔槐发布了新的文献求助10
14秒前
15秒前
淼焱发布了新的文献求助10
15秒前
七里香发布了新的文献求助10
16秒前
16秒前
毛豆爸爸应助科研通管家采纳,获得20
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
旧时青完成签到,获得积分10
18秒前
18秒前
20秒前
张祖伦完成签到 ,获得积分10
21秒前
aqaqaqa发布了新的文献求助10
21秒前
共享精神应助elooo采纳,获得10
21秒前
情怀应助耍酷的傲霜采纳,获得10
22秒前
22秒前
Jasper应助炙热怀蝶采纳,获得10
22秒前
呱呱呱发布了新的文献求助20
23秒前
Candice应助小皮球菠萝蜜采纳,获得10
23秒前
固的曼完成签到,获得积分10
23秒前
飞飞完成签到,获得积分10
24秒前
25秒前
mojomars发布了新的文献求助10
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329635
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594779
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443715
科研通“疑难数据库(出版商)”最低求助积分说明 668827
邀请新用户注册赠送积分活动 656261