摘要
Biological Mass SpectrometryVolume 21, Issue 6 p. 299-304 Article Simultaneous quantitation of arecoline, acetylcholine, and choline in tissue using gas chromatography/electron impact mass spectrometry T. A. Patterson, T. A. Patterson College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USASearch for more papers by this authorJ. W. Kosh, Corresponding Author J. W. Kosh College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USACollege of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USASearch for more papers by this author T. A. Patterson, T. A. Patterson College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USASearch for more papers by this authorJ. W. Kosh, Corresponding Author J. W. Kosh College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USACollege of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USASearch for more papers by this author First published: June 1992 https://doi.org/10.1002/bms.1200210606Citations: 27AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A capillary gas chromatography/mass spectrometry (GC/MS) assay for the simultaneous quantitation of arecoline (ARE), acetylcholine (ACh), and choline (Ch) in biological tissue has been developed. The method utilizes hexa-deuterated ARE and nonadeuterated ACh and Ch as internal standards. The compounds were ion-pair extracted from tissue using sodium tetraphenylboron in 3-heptanone. GC/MS analysis was achieved using capillary GC and electron impact mass spectrometry. Quantitation was accomplished using selected ion monitoring at m/z 140 and 146 for non-deuterated and deuterated arecoline respectively, and m/z 58 and 64 for non-deuterated and deuterated ACh and Ch respectively. The method easily detected 25 pmol of all three compounds taken through the assay, and was linear through 50 nmol. References 1 W. Marmé, Ther. Monatsh. 4, 291 (1890). Google Scholar 2 U. S. von Euler and B. Domeij, Acta Pharmacol. 1, 263 (1945). 10.1111/j.1600-0773.1945.tb02581.x Google Scholar 3 V. Haroutunian, E. Barnes and K. L. Davis, Psychopharmacology 87, 271 (1985). Google Scholar 4 N. Sitaram, H. Weingartner and J. C. Gillin, Science 201, 274 (1978). 10.1126/science.351808 CASPubMedWeb of Science®Google Scholar 5 B. Holmstedt and G. Lundgren, in Mechanisms of Release of Biogenic Amines, ed. by U. S. von Euler, p. 439. Pergamon Press, Oxford (1966). 10.1016/B978-0-08-011698-3.50044-9 Google Scholar 6 D. R. Haubrich and W. D. Reid, J. Pharmacol. Exp. Ther. 181, 19 (1972). CASPubMedWeb of Science®Google Scholar 7 V. H. Sethy and J. W. Francis, J. Pharmacol. Exp. Ther. 246, 243 (1988). CASPubMedWeb of Science®Google Scholar 8 R. C. Mohs, B. M. Davis, C. A. Johns, A. A. Mathe, B. S. Greenwald, T. B. Horvath and K. L. Davis, Am. J. Psychiatry 142, 28 (1985). 10.1176/ajp.142.1.28 CASPubMedWeb of Science®Google Scholar 9 W. K. Summers, L. V. Majovski, G. M. Marsh, K. Tachiki and A. Kling, N. Engl. J. Med. 315, 1241 (1986). 10.1056/NEJM198611133152001 CASPubMedWeb of Science®Google Scholar 10 J. E. Christie, A. Shering, J. Ferguson and A. I. M. Glen, Br. J. Psychiatry 138, 46 (1981). 10.1192/bjp.138.1.46 CASPubMedWeb of Science®Google Scholar 11 A. R. Mattocks, J. Chromatogr. 27, 505 (1967). 10.1016/S0021-9673(01)85914-8 CASPubMedWeb of Science®Google Scholar 12 L. Lepri, P. G. Desideri and M. Lepori, J. Chromatogr. 123, 175 (1976). 10.1016/S0021-9673(00)81113-9 CASPubMedWeb of Science®Google Scholar 13 B. J. Kovensky and C. W. Poole, J. Pharm. Sci. 59, 1651 (1970). 10.1002/jps.2600591124 PubMedWeb of Science®Google Scholar 14 M. J. Hayes, L. Khemani, M. Bax and D. Alkalay, Biomed. Environ. Mass Spectrom. 18, 1005 (1989). 10.1002/bms.1200181109 CASPubMedWeb of Science®Google Scholar 15 M. E. Beil, F. R. Goodman, H. H. Shlevin and E. F. Smith III, Drug Dev. Res. 9, 203 (1986). 10.1002/ddr.430090304 CASWeb of Science®Google Scholar 16 V. H. Sethy and J. W. Francis, J. Pharmacol. Methods 23, 285 (1990). 10.1016/0160-5402(90)90057-R CASPubMedWeb of Science®Google Scholar 17 J. J. O'Neill and T. Sakamoto, in Choline and Acetylcholine: Handbook of Chemical Assay Methods, ed. by I. Hanin, p. 81. Raven Press, New York (1974). Google Scholar 18 P. E. Potter, J. L. Meek and N. H. Meek, J. Neurochem. 41, 188 (1983). 10.1111/j.1471-4159.1983.tb13668.x CASPubMedWeb of Science®Google Scholar 19 D. J. Jenden and I. Hanin, in Choline and Acetylcholine: Handbook of Chemical Assay Methods, ed. by I. Hanin, p. 135. Raven Press, New York (1974). Google Scholar 20 J. J. Freeman, R. L. Choi and D. J. Jenden, J. Neurochem. 24, 729 (1975). 10.1111/j.1471-4159.1975.tb03856.x CASPubMedWeb of Science®Google Scholar 21 D. J. Jenden, I. Hanin and S. I. Lamb, Anal. Chem. 40, 125 (1968). 10.1021/ac60257a070 CASPubMedWeb of Science®Google Scholar 22 D. J. Jenden, M. Roch and R. A. Booth, Anal. Biochem. 55, 438 (1973). 10.1016/0003-2697(73)90134-6 CASPubMedWeb of Science®Google Scholar 23 D. J. Jenden and R. W. Silverman, J. Chromatogr. Sci. 11, 601 (1973). 10.1093/chromsci/11.11.601 CASWeb of Science®Google Scholar 24 F. Fonnum, Biochem. Pharmacol. 17, 2503 (1968). 10.1016/0006-2952(68)90146-9 CASPubMedWeb of Science®Google Scholar 25 F. Fonnum, Biochem. J. 113, 291 (1969). 10.1042/bj1130291 CASPubMedWeb of Science®Google Scholar 26 A. V. Terry Jr, PhD dissertation, University of South Carolina, Columbia, p. 25 (1991). Google Scholar 27 H. U. Shetty, T. T. Soncrant, N. H. Greig and S. I. Rapoport, J. Labelled Compd. Radiopharm. 28, 1025 (1990). Google Scholar 28 M. J. O'Brien, in Modern Practice of Gas Chromatography, ed. by R. L. Grob, p. 211. John Wiley, New York (1985). Google Scholar 29 M. A. Hussein and J. A. Mollica, J. Pharm. Sci. 80, 750 (1991). Google Scholar 30 J. W. Sowell Sr, Y. Tang, M. J. Valli, J. M. Chapman Jr, L. A. Usher, C. M. Vaughan and J. W. Kosh, J. Med. Chem. in press. Google Scholar 31 W. B. Stavinoha, S. T. Weintraub and A. T. Modak, J. Neurochem. 20, 361 (1973). 10.1111/j.1471-4159.1973.tb12135.x CASPubMedWeb of Science®Google Scholar 32 L. Wecker and D. E. Schmidt, Life Sci. 25, 375 (1979). 10.1016/0024-3205(79)90269-8 CASPubMedWeb of Science®Google Scholar 33 D. E. Schmidt and R. C. Speth, Anal. Biochem. 67, 353 (1975). 10.1016/0003-2697(75)90306-1 PubMedWeb of Science®Google Scholar Citing Literature Volume21, Issue6June 1992Pages 299-304 ReferencesRelatedInformation