EC50型
毒性
酿酒酵母
化学
核化学
生物利用度
纳米颗粒
铜
酵母
材料科学
纳米技术
生物化学
生物
体外
有机化学
生物信息学
作者
Kaja Kasemets,Angela Ivask,Henri‐Charles Dubourguier,Anne Kahru
标识
DOI:10.1016/j.tiv.2009.05.015
摘要
The aim of this study was to evaluate the toxic effect of nanosized ZnO, CuO and TiO2 to Saccharomyces cerevisiae – a widely used unicellular eukaryotic model organisms in molecular and cell biology. The effect of metal oxide nanoparticles, their bulk forms and respective ionic forms were compared. The bioavailable Zn2+ and Cu2+ ions in the growth medium were quantified by recombinant microbial sensors. Nano and bulk TiO2 were not toxic even at 20000 mg/l. Both, nano and bulk ZnO were of comparable toxicity (8-h EC50 121–134 mg ZnO/l and 24-h EC50 131–158 mg/l). The toxicity was explained by soluble Zn-ions as proved by the microbial sensor. However, nano CuO was about 60-fold more toxic than bulk CuO: 8-h EC50 were 20.7 and 1297 mg CuO/l and 24-h EC50 were 13.4 and 873 mg/l, respectively. The increase in toxicity of both CuO formulations at 24th hour of growth was due to the increased dissolution of copper ions from CuO over time. Comparison of EC50 values of nano CuO, bulk CuO and Cu2+ with bioavailable copper concentrations in the growth medium showed that the solubilized Cu-ions explained only about 50% of the toxicity of both, nano and bulk CuO. To our knowledge, this is the first study that evaluates the toxicity of ZnO, CuO and TiO2 nanoparticles to S. cerevisiae.
科研通智能强力驱动
Strongly Powered by AbleSci AI