亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking

对接(动物) 蛋白质-配体对接 寻找对接的构象空间 虚拟筛选 码头 大分子对接 蛋白质结构 计算机科学 算法 化学 分子动力学 计算化学 生物化学 医学 护理部
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:66 (2): 399-421 被引量:350
标识
DOI:10.1002/prot.21214
摘要

Abstract One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large‐scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m , where m represents the m ‐th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root‐mean‐square deviation <2.5 Å if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re‐ranking, and significantly better than that of single rigid‐receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)‐based methods to accommodate protein flexibility. Proteins 2007. © 2006 Wiley‐Liss, Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
27秒前
32秒前
1分钟前
烂漫的绿茶完成签到 ,获得积分10
1分钟前
DONG发布了新的文献求助10
1分钟前
寂寞的尔丝完成签到 ,获得积分10
1分钟前
小小绿发布了新的文献求助50
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
ding应助知闲采纳,获得10
3分钟前
3分钟前
满意机器猫完成签到 ,获得积分10
3分钟前
宁不正发布了新的文献求助10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
赘婿应助宁不正采纳,获得10
3分钟前
3分钟前
4分钟前
小小绿完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Sylvia_J完成签到 ,获得积分10
4分钟前
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
hhh完成签到 ,获得积分10
5分钟前
Shicheng完成签到,获得积分10
6分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
8分钟前
飞天的鱼发布了新的文献求助10
8分钟前
飞天的鱼完成签到,获得积分10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
在水一方完成签到,获得积分0
9分钟前
科研通AI2S应助hjy采纳,获得10
9分钟前
fcycukvujblk完成签到,获得积分10
9分钟前
10分钟前
hjy发布了新的文献求助10
10分钟前
11分钟前
宁不正发布了新的文献求助10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635124
求助须知:如何正确求助?哪些是违规求助? 4734822
关于积分的说明 14989758
捐赠科研通 4792826
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480262