Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking

对接(动物) 蛋白质-配体对接 寻找对接的构象空间 虚拟筛选 码头 大分子对接 蛋白质结构 计算机科学 算法 化学 分子动力学 计算化学 生物化学 医学 护理部
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:66 (2): 399-421 被引量:350
标识
DOI:10.1002/prot.21214
摘要

Abstract One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large‐scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m , where m represents the m ‐th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root‐mean‐square deviation <2.5 Å if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re‐ranking, and significantly better than that of single rigid‐receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)‐based methods to accommodate protein flexibility. Proteins 2007. © 2006 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八戒的梦想完成签到,获得积分10
刚刚
xie完成签到,获得积分10
刚刚
典雅雁梅发布了新的文献求助10
1秒前
萧瑟处完成签到,获得积分10
2秒前
2秒前
文静完成签到 ,获得积分10
2秒前
白菜也挺贵完成签到,获得积分10
3秒前
CodeCraft应助激情的易蓉采纳,获得10
4秒前
4秒前
5秒前
冷傲玫瑰发布了新的文献求助10
7秒前
木木VV完成签到,获得积分10
7秒前
7秒前
9秒前
ding应助宁紫涵采纳,获得10
10秒前
微笑的涛发布了新的文献求助10
11秒前
CWNU_HAN应助科研通管家采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
一一应助科研通管家采纳,获得10
12秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
12秒前
liu11发布了新的文献求助10
12秒前
搜集达人应助木木采纳,获得10
13秒前
喜悦的千青完成签到,获得积分10
14秒前
chillin应助Forizix采纳,获得10
14秒前
yht18893912614完成签到,获得积分20
16秒前
dou发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
共享精神应助新起点采纳,获得10
17秒前
FashionBoy应助杪123采纳,获得10
18秒前
18秒前
香蕉觅云应助奥特曼采纳,获得10
18秒前
果果发布了新的文献求助10
19秒前
科研通AI2S应助瓜姐采纳,获得10
19秒前
Hello应助诗与采纳,获得30
20秒前
QQQ发布了新的文献求助10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129146
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745595
捐赠科研通 2435160
什么是DOI,文献DOI怎么找? 1293933
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542