Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking

对接(动物) 蛋白质-配体对接 寻找对接的构象空间 虚拟筛选 码头 大分子对接 蛋白质结构 计算机科学 算法 化学 分子动力学 计算化学 生物化学 医学 护理部
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:66 (2): 399-421 被引量:350
标识
DOI:10.1002/prot.21214
摘要

Abstract One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large‐scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m , where m represents the m ‐th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root‐mean‐square deviation <2.5 Å if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re‐ranking, and significantly better than that of single rigid‐receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)‐based methods to accommodate protein flexibility. Proteins 2007. © 2006 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彻底完成签到,获得积分10
刚刚
小蘑菇应助科研通管家采纳,获得30
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助贾潮雨采纳,获得10
2秒前
2秒前
朱佳慧发布了新的文献求助30
2秒前
Orange应助小卡采纳,获得10
2秒前
3秒前
Jackkyzjr完成签到,获得积分10
3秒前
QingGuo完成签到,获得积分10
3秒前
YUKI发布了新的文献求助10
3秒前
眼睛大以寒完成签到 ,获得积分10
4秒前
琳雨完成签到,获得积分10
4秒前
ke发布了新的文献求助10
4秒前
4秒前
4秒前
XIAOTONGTONG发布了新的文献求助10
4秒前
5秒前
5秒前
LKOBES发布了新的文献求助10
6秒前
我是老大应助糊涂的缘分采纳,获得30
6秒前
6秒前
ZHU发布了新的文献求助10
6秒前
6秒前
baling发布了新的文献求助10
6秒前
7秒前
gwh发布了新的文献求助30
7秒前
8秒前
8秒前
羽宇发布了新的文献求助10
9秒前
瘦瘦怀亦发布了新的文献求助10
9秒前
丘比特应助芝士采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005236
求助须知:如何正确求助?哪些是违规求助? 4248931
关于积分的说明 13239041
捐赠科研通 4048486
什么是DOI,文献DOI怎么找? 2214899
邀请新用户注册赠送积分活动 1224821
关于科研通互助平台的介绍 1145241