Feature-Selected Tree-Based Classification

多类分类 人工智能 支持向量机 分类器(UML) 模式识别(心理学) 特征选择 计算机科学 线性分类器 结构化支持向量机 二元分类 机器学习 数据挖掘
作者
Cecille Freeman,Dana Kulić,Otman Basir
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 1990-2004 被引量:34
标识
DOI:10.1109/tsmcb.2012.2237394
摘要

Feature selection can decrease classifier size and improve accuracy by removing noisy and/or redundant features. However, it is possible for feature selection to yield features that are only partially informative about the classes in the set. These features are beneficial for distinguishing between some classes but not others. In these cases, it is beneficial to divide the large classification problem into a set of smaller problems, where a more specific set of features can be used to classify different classes. Dividing a problem this way is also common when the base classifier is binary, and the problem needs to be reformulated as a set of two-class problems so it can be handled by the classifier. This paper presents a method for multiclass classification that simultaneously formulates a binary tree of simpler classification subproblems and performs feature selection for the individual classifiers. The feature selected hierarchical classifier (FSHC) is tested against several well-known techniques for multiclass division. Tests are run on nine different real data sets and one artificial data set using a support vector machine (SVM) classifier. The results show that the accuracy obtained by the FSHC is comparable with other common multiclass SVM methods. Furthermore, the results demonstrate that the algorithm creates solutions with fewer classifiers, fewer features, and a shorter testing time than the other SVM multiclass extensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
yyyy关注了科研通微信公众号
2秒前
Jane完成签到 ,获得积分10
3秒前
3秒前
3秒前
kento发布了新的文献求助30
3秒前
Akim应助balzacsun采纳,获得10
4秒前
狼来了aas发布了新的文献求助10
4秒前
5秒前
didi完成签到,获得积分10
5秒前
嘻嘻发布了新的文献求助10
7秒前
冲冲冲完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
善良身影完成签到,获得积分10
10秒前
天天快乐应助郭豪琪采纳,获得10
11秒前
13679165979发布了新的文献求助10
13秒前
13679165979发布了新的文献求助10
13秒前
13679165979发布了新的文献求助10
13秒前
13679165979发布了新的文献求助10
13秒前
13679165979发布了新的文献求助10
13秒前
13秒前
Su发布了新的文献求助10
13秒前
13秒前
淡定的思松应助呆萌士晋采纳,获得10
13秒前
14秒前
15秒前
dilli完成签到 ,获得积分10
15秒前
cwy发布了新的文献求助10
17秒前
wz发布了新的文献求助10
17秒前
balzacsun发布了新的文献求助10
19秒前
JamesPei应助星星采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824