亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-linear exact geometry 12-node solid-shell element with three translational degrees of freedom per node

曲线坐标 有限元法 几何学 壳体(结构) 数学 切线 切线刚度矩阵 自由度(物理和化学) 刚度矩阵 数学分析 刚体 切线空间 旋转(数学) 流离失所(心理学) 节点(物理) 基质(化学分析) 经典力学 物理 结构工程 工程类 材料科学 心理学 土木工程 量子力学 复合材料 心理治疗师
作者
Г. М. Куликов,С. В. Плотникова
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:88 (13): 1363-1389 被引量:22
标识
DOI:10.1002/nme.3226
摘要

International Journal for Numerical Methods in EngineeringVolume 88, Issue 13 p. 1363-1389 Research Article Non-linear exact geometry 12-node solid-shell element with three translational degrees of freedom per node G. M. Kulikov, Corresponding Author G. M. Kulikov [email protected] Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaDepartment of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaSearch for more papers by this authorS. V. Plotnikova, S. V. Plotnikova Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaSearch for more papers by this author G. M. Kulikov, Corresponding Author G. M. Kulikov [email protected] Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaDepartment of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaSearch for more papers by this authorS. V. Plotnikova, S. V. Plotnikova Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, RussiaSearch for more papers by this author First published: 26 May 2011 https://doi.org/10.1002/nme.3226Citations: 18Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This paper presents the finite rotation exact geometry (EG) 12-node solid-shell element with 36 displacement degrees of freedom. The term 'EG' reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at each element node. The finite element formulation developed is based on the 9-parameter shell model by employing a new concept of sampling surfaces (S-surfaces) inside the shell body. We introduce three S-surfaces, namely, bottom, middle and top, and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows one to represent the finite rotation higher order EG solid-shell element formulation in a very compact form and to derive the strain–displacement relationships, which are objective, that is, invariant under arbitrarily large rigid-body shell motions in convected curvilinear coordinates. The tangent stiffness matrix is evaluated by using 3D analytical integration and the explicit presentation of this matrix is given. The latter is unusual for the non-linear EG shell element formulation. Copyright © 2011 John Wiley & Sons, Ltd. REFERENCES 1 Parisch H, A continuum-based shell theory for non-linear applications. International Journal for Numerical Methods in Engineering 1995; 38: 1855–1883. 10.1002/nme.1620381105 Web of Science®Google Scholar 2 Sansour C, A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Archive of Applied Mechanics 1995; 65: 194–216. 10.1007/s004190050012 Web of Science®Google Scholar 3 Basar Y, Itskov M, Eckstein A, Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements. Computer Methods in Applied Mechanics and Engineering 2000; 185: 367–397. 10.1016/S0045-7825(99)00267-4 Web of Science®Google Scholar 4 El-Abbasi N, Meguid SA, A new shell element accounting for through-thickness deformation. Computer Methods in Applied Mechanics and Engineering 2000; 189: 841–862. 10.1016/S0045-7825(99)00348-5 Web of Science®Google Scholar 5 Brank B, Nonlinear shell models with seven kinematic parameters. Computer Methods in Applied Mechanics and Engineering 2005; 194: 2336–2362. 10.1016/j.cma.2004.07.036 Web of Science®Google Scholar 6 Arciniega RA, Reddy JN, Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Computer Methods in Applied Mechanics and Engineering 2007; 196: 1048–1073. 10.1016/j.cma.2006.08.014 Web of Science®Google Scholar 7 Kulikov GM, Plotnikova SV, Finite rotation geometrically exact four-node solid-shell element with seven displacement degrees of freedom. Computer Modeling in Engineering and Sciences 2008; 28: 15–38. Web of Science®Google Scholar 8 Lee K, Lee SW, An assumed strain solid shell element formulation with transversely quadratic displacement. Computer Modeling in Engineering and Sciences 2008; 34: 253–272. Web of Science®Google Scholar 9 Kulikov GM, Plotnikova SV, Calculation of composite structures subjected to follower loads by using a geometrically exact shell element. Mechanics of Composite Materials 2009; 45: 545–556. 10.1007/s11029-010-9111-8 Web of Science®Google Scholar 10 Kim YH, Lee SW, A solid element formulation for large deflection analysis of composite shell structures. Computers and Structures 1988; 30: 269–274. 10.1016/0045-7949(88)90232-5 Web of Science®Google Scholar 11 Cho C, Lee SW, On the assumed strain formulation for geometrically nonlinear analysis. Finite Elements in Analysis and Design 1996; 24: 31–47. 10.1016/0168-874X(95)00045-U Web of Science®Google Scholar 12 Kulikov GM, Plotnikova SV, Investigation of locally loaded multilayered shells by mixed finite-element method. Part II: geometrically nonlinear statement. Mechanics of Composite Materials 2002; 38: 539–546. 10.1023/A:1021730710125 CASWeb of Science®Google Scholar 13 Sze KY, Chan WK, Pian THH, An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. International Journal for Numerical Methods in Engineering 2002; 55: 853–878. 10.1002/nme.535 Web of Science®Google Scholar 14 Kulikov GM, Plotnikova SV, Equivalent single-layer and layer-wise shell theories and rigid-body motions. Part I: foundations. Mechanics of Advanced Materials and Structures 2005; 12: 275–283; Part II: computational aspects 2005; 12:331–340. 10.1080/15376490590953545 Web of Science®Google Scholar 15 Kulikov GM, Plotnikova SV, Geometrically exact assumed stress–strain multilayered solid-shell elements based on the 3D analytical integration. Computers and Structures 2006; 84: 1275–1287. 10.1016/j.compstruc.2006.01.034 Web of Science®Google Scholar 16 Sze KY, Yao LQ, A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I: solid-shell element formulation. International Journal for Numerical Methods in Engineering 2000; 48: 545–564. 10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6 Web of Science®Google Scholar 17 Buchter N, Ramm E, Roehl D, Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. International Journal for Numerical Methods in Engineering 1994; 37: 2551–2568. 10.1002/nme.1620371504 Web of Science®Google Scholar 18 Betsch P, Stein E, An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Communications in Numerical Methods in Engineering 1995; 11: 899–909. 10.1002/cnm.1640111104 Web of Science®Google Scholar 19 Kulikov GM, On the first-order seven-parameter plate theory. Transactions of the Tambov State Technical University 2007; 13: 518–528. Google Scholar 20 Kulikov GM, Carrera E, Finite deformation higher-order shell models and rigid-body motions. International Journal of Solids and Structures 2008; 45: 3153–3172. 10.1016/j.ijsolstr.2008.01.020 Web of Science®Google Scholar 21 Kulikov GM, Plotnikova SV, Non-linear strain–displacement equations exactly representing large rigid-body motions. Part II: enhanced finite element technique. Computer Methods in Applied Mechanics and Engineering 2006; 195: 2209–2230. 10.1016/j.cma.2005.05.006 Web of Science®Google Scholar 22 Wempner G, Talaslidis D, Hwang CM, A simple and efficient approximation of shells via finite quadrilateral elements. Journal of Applied Mechanics 1982; 49: 115–120. 10.1115/1.3161951 Web of Science®Google Scholar 23 Kulikov GM, Plotnikova SV, Non-conventional non-linear two-node hybrid stress–strain curved beam elements. Finite Elements in Analysis and Design 2004; 40: 1333–1359. 10.1016/j.finel.2003.09.004 Web of Science®Google Scholar 24 Kulikov GM, Plotnikova SV, Finite deformation plate theory and large rigid-body motions. International Journal of Non-Linear Mechanics 2004; 39: 1093–1109. 10.1016/S0020-7462(03)00099-4 Web of Science®Google Scholar 25 Kulikov GM, Plotnikova SV, Non-linear geometrically exact assumed stress–strain four-node solid-shell element with high coarse-mesh accuracy. Finite Elements in Analysis and Design 2007; 43: 425–443. 10.1016/j.finel.2006.11.003 Web of Science®Google Scholar 26 Kulikov GM, Strain–displacement relationships that exactly represent large rigid-body displacements. Mechanics of Solids 2004; 39: 105–113. Google Scholar 27 Hughes TJR, Tezduyar TE, Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. Journal of Applied Mechanics 1981; 48: 587–596. 10.1115/1.3157679 Web of Science®Google Scholar 28 MacNeal RH, Derivation of element stiffness matrices by assumed strain distributions. Nuclear Engineering and Design 1982; 70: 3–12. 10.1016/0029-5493(82)90262-X Web of Science®Google Scholar 29 Bathe KJ, Dvorkin EN, A formulation of general shell elements—the use of mixed interpolation of tensorial components. International Journal for Numerical Methods in Engineering 1986; 22: 697–722. 10.1002/nme.1620220312 Web of Science®Google Scholar 30 Park KC, Stanley GM, A curved C∘ shell element based on assumed natural coordinate strains. Journal of Applied Mechanics 1986; 53: 278–290. 10.1115/1.3171752 Web of Science®Google Scholar 31 Pian THH, Derivation of element stiffness matrices by assumed stress distributions. AIAA Journal 1964; 2: 1333–1336. 10.2514/3.2546 Web of Science®Google Scholar 32 Pian THH, Sumihara K, Rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering 1984; 20: 1685–1695. 10.1002/nme.1620200911 Web of Science®Google Scholar 33 Pian THH, State-of-the-art development of hybrid/mixed finite element method. Finite Elements in Analysis and Design 1995; 21: 5–20. 10.1016/0168-874X(95)00024-2 Web of Science®Google Scholar 34 Lee SW, Pian THH, Improvement of plate and shell finite elements by mixed formulations. AIAA Journal 1978; 16: 29–34. 10.2514/3.60853 Web of Science®Google Scholar 35 Atluri SN, On the hybrid stress finite element model for incremental analysis of large deflection problems. International Journal of Solids and Structures 1973; 9: 1177–1191. 10.1016/0020-7683(73)90110-8 Google Scholar 36 Boland PL, Pian THH, Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method. Computers and Structures 1977; 7: 1–12. 10.1016/0045-7949(77)90055-4 Web of Science®Google Scholar 37 Belytschko T, Tsay CS, A stabilization procedure for the quadrilateral plate element with one-point quadrature. International Journal for Numerical Methods in Engineering 1983; 19: 405–419. 10.1002/nme.1620190308 Web of Science®Google Scholar 38 Gruttmann F, Wagner W, A stabilized one-point integrated quadrilateral Reissner–Mindlin plate element. International Journal for Numerical Methods in Engineering 2004; 61: 2273–2295. 10.1002/nme.1148 Web of Science®Google Scholar 39 Batoz JL, Tahar MB, Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering 1982; 18: 1655–1677. 10.1002/nme.1620181106 Web of Science®Google Scholar 40 Timoshenko SP, Woinowsky-Krieger S, Theory of Plates and Shells ( 2nd edn). McGraw-Hill: New York, 1970. Google Scholar 41 Timoshenko SP, Goodier JN, Theory of Elasticity ( 3rd edn). McGraw-Hill: New York, 1970. Google Scholar 42 Hughes TJR, Liu WK, Nonlinear finite element analysis of shells. Part II: two-dimensional shells. Computer Methods in Applied Mechanics and Engineering 1981; 27: 167–181. 10.1016/0045-7825(81)90148-1 Google Scholar 43 Liu WK, Law ES, Lam D, Belytschko T, Resultant-stress degenerated-shell element. Computer Methods in Applied Mechanics and Engineering 1986; 55: 259–300. 10.1016/0045-7825(86)90056-3 Web of Science®Google Scholar 44 Simo JC, Fox DD, Rifai MC, On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Computer Methods in Applied Mechanics and Engineering 1989; 73: 53–92. 10.1016/0045-7825(89)90098-4 Web of Science®Google Scholar 45 Belytschko T, Wong BL, Stolarski H, Assumed strain stabilization procedure for the 9-node Lagrange shell element. International Journal for Numerical Methods in Engineering 1989; 28: 385–414. 10.1002/nme.1620280210 Web of Science®Google Scholar 46 Kulikov GM, Plotnikova SV, A family of ANS four-node exact geometry shell elements in general convected curvilinear coordinates. International Journal for Numerical Methods in Engineering 2010; 83: 1376–1406. 10.1002/nme.2872 Web of Science®Google Scholar 47 Lindberg GM, Olson MD, Cowper GR, New developments in the finite element analysis of shells. Quarterly Bulletin of Division of Mechanical Engineering and National Aeronautical Establishment, National Research Council of Canada 1969; 4: 1–38. Google Scholar 48 Kulikov GM, Refined global approximation theory of multilayered plates and shells. Journal of Engineering Mechanics 2001; 127: 119–125. 10.1061/(ASCE)0733-9399(2001)127:2(119) Web of Science®Google Scholar 49 Sze KY, Liu XH, Lo SH, Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 2004; 40: 1551–1569. 10.1016/j.finel.2003.11.001 Web of Science®Google Scholar 50 Basar Y, Ding Y, Schultz R, Refined shear-deformation models for composite laminates with finite rotations. International Journal of Solids and Structures 1993; 30: 2611–2638. 10.1016/0020-7683(93)90102-D Web of Science®Google Scholar Citing Literature Volume88, Issue1330 December 2011Pages 1363-1389 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
陈媛发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分10
2分钟前
4分钟前
PD完成签到,获得积分10
4分钟前
4分钟前
5分钟前
义气的书雁完成签到,获得积分10
5分钟前
5分钟前
andrele发布了新的文献求助10
6分钟前
谦也静熵完成签到,获得积分10
7分钟前
通科研完成签到 ,获得积分10
7分钟前
9分钟前
andrele发布了新的文献求助10
9分钟前
陈媛发布了新的文献求助10
9分钟前
sasa发布了新的文献求助10
9分钟前
sasa完成签到,获得积分10
10分钟前
满地枫叶完成签到,获得积分20
11分钟前
joanna完成签到,获得积分10
11分钟前
满地枫叶发布了新的文献求助10
11分钟前
11分钟前
M先生完成签到,获得积分10
11分钟前
11分钟前
11分钟前
tlx发布了新的文献求助10
12分钟前
12分钟前
12分钟前
12分钟前
12分钟前
12分钟前
小圆圈发布了新的文献求助30
13分钟前
兴奋的宛亦完成签到,获得积分20
13分钟前
zhanglongfei发布了新的文献求助10
13分钟前
13分钟前
小圆圈发布了新的文献求助10
13分钟前
13分钟前
小圆圈发布了新的文献求助10
13分钟前
李健的小迷弟应助小圆圈采纳,获得10
14分钟前
14分钟前
冬瓜排骨养生汤完成签到,获得积分10
14分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757