RABBIT: Rapid alignment of brains by building intermediate templates

空间归一化 模板 计算机科学 人工智能 图像配准 计算机视觉 模式识别(心理学) 图像(数学) 规范化(社会学) 图像扭曲 体素 人类学 社会学 程序设计语言
作者
Songyuan Tang,Yong Fan,Guorong Wu,Minjeong Kim,Dinggang Shen
出处
期刊:NeuroImage [Elsevier]
卷期号:47 (4): 1277-1287 被引量:78
标识
DOI:10.1016/j.neuroimage.2009.02.043
摘要

A brain image registration algorithm, referred to as RABBIT, is proposed to achieve fast and accurate image registration with the help of an intermediate template generated by a statistical deformation model. The statistical deformation model is built by principal component analysis (PCA) on a set of training samples of brain deformation fields that warp a selected template image to the individual brain samples. The statistical deformation model is capable of characterizing individual brain deformations by a small number of parameters, which is used to rapidly estimate the brain deformation between the template and a new individual brain image. The estimated deformation is then used to warp the template, thus generating an intermediate template close to the individual brain image. Finally, the shape difference between the intermediate template and the individual brain is estimated by an image registration algorithm, e.g., HAMMER. The overall registration between the template and the individual brain image can be achieved by directly combining the deformation fields that warp the template to the intermediate template, and the intermediate template to the individual brain image. The algorithm has been validated for spatial normalization of both simulated and real magnetic resonance imaging (MRI) brain images. Compared with HAMMER, the experimental results demonstrate that the proposed algorithm can achieve over five times speedup, with similar registration accuracy and statistical power in detecting brain atrophy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四川盆地的第四系完成签到,获得积分20
刚刚
刚刚
1秒前
1秒前
正直听白完成签到,获得积分10
1秒前
stringz完成签到,获得积分10
1秒前
小二郎应助海贼王采纳,获得10
1秒前
1秒前
玛卡巴卡发布了新的文献求助20
1秒前
马马发布了新的文献求助10
2秒前
3秒前
缓慢含烟发布了新的文献求助10
3秒前
神志不清的衾完成签到,获得积分10
4秒前
4秒前
传奇3应助老迟到的小丸子采纳,获得10
4秒前
4秒前
6秒前
话梅气泡美式完成签到,获得积分10
6秒前
111应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
lx完成签到,获得积分10
8秒前
Uaena应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
evz应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
ChenWen完成签到,获得积分10
9秒前
寒月如雪发布了新的文献求助10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957