Validation of a Nomogram for Prediction of Side Specific Extracapsular Extension at Radical Prostatectomy

医学 列线图 前列腺切除术 扩展(谓词逻辑) 泌尿科 普通外科 前列腺癌 肿瘤科 内科学 癌症 计算机科学 程序设计语言
作者
Thomas Steuber,Markus Graefen,Alexander Haese,Andreas Erbersdobler,Felix K.‐H. Chun,Thorsten Schlom,Paul Perrotte,Hartwig Huland,Pierre I. Karakiewicz
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:175 (3): 939-944 被引量:168
标识
DOI:10.1016/s0022-5347(05)00342-3
摘要

We have previously have reported a tree structured regression model for predicting SS-ECE. Others recently reported a logistic regression based SS-ECE nomogram. We developed a nomogram and compared the performance and discriminant properties of the tree regression and the nomogram in a contemporary cohort of European patients treated with radical retropubic prostatectomy.The cohort consisted of 1,118 patients with pretreatment prostate specific antigen 0.1 to 73.2 ng/ml (median 6.6). Each of the 2,236 prostate lobes was considered separately. Clinical stage, pretreatment PSA, biopsy Gleason sum, percent positive cores and percent cancer in the biopsy specimen were used as predictors in a logistic regression model predicting SS-ECE. Regression coefficients were then used to generate an SS-ECE nomogram. Performance characteristics and discriminant properties of the previously published tree regression were also tested in the same cohort. For internal validation and to decrease overfit bias 200 bootstrap re-samples were applied to accuracy estimates for each method.ECE was present in 303 of 1,118 radical retropubic prostatectomy specimens (27%) and in 385 lobes (17%). In logistic regression models all variables were statistically significant multivariate predictors of SS-ECE except the percent of positive biopsy cores (p = 0.7). Bootstrap corrected predictive accuracy of the SS-ECE nomogram was 0.840 vs 0.700 for the tree regression model.Logistic regression based nomogram predictions of SS-ECE are highly accurate and represent a valuable aid for assessing the risk of ECE prior to surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cindy发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
笑笑完成签到,获得积分10
1秒前
2秒前
默默的芙完成签到,获得积分10
2秒前
xm发布了新的文献求助10
2秒前
2秒前
3秒前
陈佳琪完成签到,获得积分10
3秒前
LU完成签到,获得积分10
3秒前
3秒前
3秒前
lwei发布了新的文献求助10
3秒前
设计狂魔应助九川采纳,获得30
3秒前
LiShin发布了新的文献求助10
4秒前
song完成签到,获得积分10
5秒前
Phoebe1996发布了新的文献求助10
5秒前
yannis2020发布了新的文献求助10
5秒前
小猴发布了新的文献求助10
6秒前
酷酷的老太完成签到 ,获得积分20
6秒前
6秒前
锣大炮完成签到,获得积分10
7秒前
maqin完成签到,获得积分10
7秒前
小王完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
科研通AI2S应助lwei采纳,获得10
7秒前
幽默的念双完成签到,获得积分10
7秒前
正直冰露发布了新的文献求助10
8秒前
标致小伙发布了新的文献求助10
8秒前
8秒前
pinkdon完成签到,获得积分10
8秒前
5477完成签到,获得积分10
8秒前
9秒前
lins完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762