Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data

圆锥角膜 医学 Scheimpflug原理 眼科 角膜地形图 角膜测厚术 角膜 验光服务
作者
María Clara Arbelaez,Francesco Versaci,Gabriele Vestri,Piero Barboni,Giacomo Savini
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:119 (11): 2231-2238 被引量:223
标识
DOI:10.1016/j.ophtha.2012.06.005
摘要

Purpose To define a new classification method for the diagnosis of keratoconus based on corneal measurements provided by a Scheimpflug camera combined with Placido corneal topography (Sirius, CSO, Florence, Italy). Design Retrospective case series. Participants We analyzed the examinations of 877 eyes with keratoconus, 426 eyes with subclinical keratoconus, 940 eyes with a history of corneal surgery (defined as abnormal), and 1259 healthy control eyes. Methods For each group, eyes were divided into a training and a validation set. A support vector machine (SVM) was used to analyze the corneal measurements and classify the eyes into the 4 groups of participants. The classifier was trained to consider the indices obtained from both the anterior and posterior corneal surfaces or only from the anterior corneal surface. Main Outcome Measures Symmetry index of front and back corneal curvature, best fit radius of the front corneal surface, Baiocchi Calossi Versaci front index (BCVf) and BCV back index (BCVb), root mean square of front and back corneal surface higher order aberrations, and thinnest corneal point were analyzed. The diagnostic performance of the classifier was evaluated. Results The accuracy of the classifier was excellent both with and without the data generated from the posterior corneal surface and corneal thickness because the number of true predictions was greater than 95% and 93%, respectively, in all classes. Precision improved most when posterior corneal surface data were included, especially in cases of subclinical keratoconus. Using the data from both anterior and posterior corneal surfaces and pachymetry allowed the SVM to increase its sensitivity from 89.3% to 96.0% in abnormal eyes, 92.8% to 95.0% in eyes with keratoconus, 75.2% to 92.0% in eyes with subclinical keratoconus, and 93.1% to 97.2% in normal eyes. Conclusions The classification algorithm showed high accuracy, precision, sensitivity, and specificity in discriminating among abnormal eyes, eyes with keratoconus or subclinical keratoconus, and normal eyes. Including the posterior corneal surface and thickness parameters markedly improved the sensitivity in the diagnosis of subclinical keratoconus. Classification may be particularly useful in excluding eyes with early signs of corneal ectasia when screening patients for excimer laser surgery. Financial Disclosure(s) Proprietary or commercial disclosure may be found after the references. To define a new classification method for the diagnosis of keratoconus based on corneal measurements provided by a Scheimpflug camera combined with Placido corneal topography (Sirius, CSO, Florence, Italy). Retrospective case series. We analyzed the examinations of 877 eyes with keratoconus, 426 eyes with subclinical keratoconus, 940 eyes with a history of corneal surgery (defined as abnormal), and 1259 healthy control eyes. For each group, eyes were divided into a training and a validation set. A support vector machine (SVM) was used to analyze the corneal measurements and classify the eyes into the 4 groups of participants. The classifier was trained to consider the indices obtained from both the anterior and posterior corneal surfaces or only from the anterior corneal surface. Symmetry index of front and back corneal curvature, best fit radius of the front corneal surface, Baiocchi Calossi Versaci front index (BCVf) and BCV back index (BCVb), root mean square of front and back corneal surface higher order aberrations, and thinnest corneal point were analyzed. The diagnostic performance of the classifier was evaluated. The accuracy of the classifier was excellent both with and without the data generated from the posterior corneal surface and corneal thickness because the number of true predictions was greater than 95% and 93%, respectively, in all classes. Precision improved most when posterior corneal surface data were included, especially in cases of subclinical keratoconus. Using the data from both anterior and posterior corneal surfaces and pachymetry allowed the SVM to increase its sensitivity from 89.3% to 96.0% in abnormal eyes, 92.8% to 95.0% in eyes with keratoconus, 75.2% to 92.0% in eyes with subclinical keratoconus, and 93.1% to 97.2% in normal eyes. The classification algorithm showed high accuracy, precision, sensitivity, and specificity in discriminating among abnormal eyes, eyes with keratoconus or subclinical keratoconus, and normal eyes. Including the posterior corneal surface and thickness parameters markedly improved the sensitivity in the diagnosis of subclinical keratoconus. Classification may be particularly useful in excluding eyes with early signs of corneal ectasia when screening patients for excimer laser surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xl完成签到 ,获得积分10
刚刚
SYLH应助hhh采纳,获得10
1秒前
端庄大白完成签到 ,获得积分10
1秒前
HT完成签到,获得积分10
2秒前
wmk完成签到,获得积分10
2秒前
不是风动关注了科研通微信公众号
2秒前
wei发布了新的文献求助10
2秒前
2秒前
轩辕寄风应助一个小胖子采纳,获得10
3秒前
5秒前
LLN完成签到,获得积分20
5秒前
LIM发布了新的文献求助10
5秒前
海鑫王发布了新的文献求助10
6秒前
hx完成签到 ,获得积分10
6秒前
6秒前
木子完成签到 ,获得积分10
8秒前
8秒前
科研通AI2S应助潇洒飞丹采纳,获得10
8秒前
9秒前
CAOHOU举报KY Mr.WANG求助涉嫌违规
10秒前
12秒前
付2发布了新的文献求助10
12秒前
天天快乐应助榴莲采纳,获得10
14秒前
14秒前
ZHXR发布了新的文献求助10
15秒前
wei完成签到,获得积分20
17秒前
chengxue完成签到,获得积分10
18秒前
THUNDERSTONE完成签到,获得积分10
19秒前
lll完成签到,获得积分20
19秒前
美好冰蓝发布了新的文献求助10
19秒前
21秒前
海鑫王完成签到,获得积分10
23秒前
23秒前
bkagyin应助觅海采纳,获得10
24秒前
Newt完成签到,获得积分10
24秒前
俏皮诺言发布了新的文献求助10
25秒前
25秒前
SYLH应助hhh采纳,获得10
25秒前
364zdk完成签到 ,获得积分10
26秒前
小小完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824