Heat tolerance in plants: An overview

热休克蛋白 细胞生物学 发芽 光合作用 渗透调节剂 生物 活性氧 蛋白激酶A 植物 生物物理学 激酶 生物化学 基因 脯氨酸 氨基酸
作者
Abdul Wahid,Sadia Gelani,Muhammad Ashraf,Majid R. Foolad
出处
期刊:Environmental and Experimental Botany [Elsevier]
卷期号:61 (3): 199-223 被引量:3246
标识
DOI:10.1016/j.envexpbot.2007.05.011
摘要

Heat stress due to increased temperature is an agricultural problem in many areas in the world. Transitory or constantly high temperatures cause an array of morpho-anatomical, physiological and biochemical changes in plants, which affect plant growth and development and may lead to a drastic reduction in economic yield. The adverse effects of heat stress can be mitigated by developing crop plants with improved thermotolerance using various genetic approaches. For this purpose, however, a thorough understanding of physiological responses of plants to high temperature, mechanisms of heat tolerance and possible strategies for improving crop thermotolerance is imperative. Heat stress affects plant growth throughout its ontogeny, though heat-threshold level varies considerably at different developmental stages. For instance, during seed germination, high temperature may slow down or totally inhibit germination, depending on plant species and the intensity of the stress. At later stages, high temperature may adversely affect photosynthesis, respiration, water relations and membrane stability, and also modulate levels of hormones and primary and secondary metabolites. Furthermore, throughout plant ontogeny, enhanced expression of a variety of heat shock proteins, other stress-related proteins, and production of reactive oxygen species (ROS) constitute major plant responses to heat stress. In order to cope with heat stress, plants implement various mechanisms, including maintenance of membrane stability, scavenging of ROS, production of antioxidants, accumulation and adjustment of compatible solutes, induction of mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, most importantly, chaperone signaling and transcriptional activation. All these mechanisms, which are regulated at the molecular level, enable plants to thrive under heat stress. Based on a complete understanding of such mechanisms, potential genetic strategies to improve plant heat-stress tolerance include traditional and contemporary molecular breeding protocols and transgenic approaches. While there are a few examples of plants with improved heat tolerance through the use of traditional breeding protocols, the success of genetic transformation approach has been thus far limited. The latter is due to limited knowledge and availability of genes with known effects on plant heat-stress tolerance, though these may not be insurmountable in future. In addition to genetic approaches, crop heat tolerance can be enhanced by preconditioning of plants under different environmental stresses or exogenous application of osmoprotectants such as glycinebetaine and proline. Acquiring thermotolerance is an active process by which considerable amounts of plant resources are diverted to structural and functional maintenance to escape damages caused by heat stress. Although biochemical and molecular aspects of thermotolerance in plants are relatively well understood, further studies focused on phenotypic flexibility and assimilate partitioning under heat stress and factors modulating crop heat tolerance are imperative. Such studies combined with genetic approaches to identify and map genes (or QTLs) conferring thermotolerance will not only facilitate marker-assisted breeding for heat tolerance but also pave the way for cloning and characterization of underlying genetic factors which could be useful for engineering plants with improved heat tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjx完成签到 ,获得积分10
刚刚
yyyyyqy完成签到,获得积分10
1秒前
曲曲完成签到,获得积分10
1秒前
1秒前
lvdoudabing完成签到,获得积分10
1秒前
1秒前
sunshine发布了新的文献求助10
1秒前
包容的忆灵完成签到 ,获得积分10
1秒前
西瓜汁完成签到,获得积分10
2秒前
2秒前
Jiayou Zhang完成签到,获得积分10
2秒前
hahaha完成签到 ,获得积分10
2秒前
233完成签到,获得积分10
2秒前
wallacetan完成签到,获得积分10
3秒前
陶远望完成签到,获得积分10
3秒前
4秒前
cc发布了新的文献求助30
4秒前
19900420发布了新的文献求助10
4秒前
sun完成签到,获得积分10
4秒前
想多睡会儿完成签到,获得积分10
4秒前
张小苟发布了新的文献求助10
5秒前
5秒前
车水完成签到 ,获得积分10
6秒前
8秒前
Nanki完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助太渊采纳,获得10
9秒前
草莓奶昔发布了新的文献求助10
9秒前
9秒前
研妍完成签到,获得积分10
9秒前
fangplus完成签到,获得积分10
9秒前
nibang完成签到,获得积分20
9秒前
10秒前
柔弱小猫咪完成签到,获得积分10
10秒前
诚心的小懒虫完成签到,获得积分10
11秒前
谦让的凝阳完成签到,获得积分10
11秒前
无奈柚子完成签到,获得积分10
11秒前
母单花完成签到 ,获得积分10
11秒前
12秒前
May完成签到,获得积分10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257464
求助须知:如何正确求助?哪些是违规求助? 2899400
关于积分的说明 8305459
捐赠科研通 2568655
什么是DOI,文献DOI怎么找? 1395219
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630767