预言
电池(电)
可靠性工程
健康管理体系
汽车工程
计算机科学
工程类
系统工程
可靠性(半导体)
健康状况
预测性维护
状态维修
能源管理
医学
功率(物理)
病理
物理
替代医学
量子力学
作者
Kai Goebel,Bhaskar Saha,Abhinav Saxena,José Celaya,Jon P. Christophersen
出处
期刊:IEEE Instrumentation & Measurement Magazine
[Institute of Electrical and Electronics Engineers]
日期:2008-08-01
卷期号:11 (4): 33-40
被引量:427
标识
DOI:10.1109/mim.2008.4579269
摘要
In this article, we examine prognostics and health management (PHM) issues using battery health management of Gen 2 cells, an 18650-size lithium-ion cell, as a test case. We will show where advanced regression, classification, and state estimation algorithms have an important role in the solution of the problem and in the data collection scheme for battery health management that we used for this case study.
科研通智能强力驱动
Strongly Powered by AbleSci AI