The Li-Ion Rechargeable Battery: A Perspective

电解质 电池(电) 阳极 阴极 化学 电极 离子 电压 储能 电化学 化学工程 分析化学(期刊) 电气工程 功率(物理) 热力学 有机化学 物理化学 工程类 物理
作者
John B. Goodenough,Kyu‐Sung Park
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:135 (4): 1167-1176 被引量:8930
标识
DOI:10.1021/ja3091438
摘要

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的柚子完成签到,获得积分10
刚刚
刚刚
科目三应助从容的采梦采纳,获得10
1秒前
13664424767发布了新的文献求助10
1秒前
蓝胖胖完成签到,获得积分10
1秒前
嗯呐完成签到,获得积分10
1秒前
2秒前
慕青应助lzy303886采纳,获得10
2秒前
2秒前
Hello应助乔木自燃采纳,获得10
3秒前
Mm林完成签到,获得积分10
3秒前
所所应助凸迩丝儿采纳,获得10
3秒前
明理平文发布了新的文献求助10
3秒前
iffy发布了新的文献求助10
3秒前
4秒前
汪Hiver完成签到,获得积分10
4秒前
完美世界应助ss采纳,获得10
4秒前
4秒前
咯咯葛完成签到,获得积分10
5秒前
小糊涂完成签到,获得积分10
5秒前
尊敬的小凡完成签到,获得积分10
5秒前
要努力鸭完成签到 ,获得积分10
5秒前
学术白银完成签到,获得积分20
6秒前
张晓倩发布了新的文献求助10
6秒前
wjn完成签到,获得积分10
6秒前
6秒前
一杯冰美式完成签到,获得积分10
6秒前
7秒前
7秒前
阿婧完成签到,获得积分10
8秒前
杨老师发布了新的文献求助10
8秒前
执着秋寒完成签到,获得积分10
8秒前
哈尼完成签到,获得积分10
9秒前
gaowan发布了新的文献求助10
9秒前
9秒前
Lee完成签到,获得积分10
9秒前
9秒前
13664424767完成签到,获得积分10
9秒前
情怀应助wangyk采纳,获得20
10秒前
mll完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347