The Li-Ion Rechargeable Battery: A Perspective

电解质 电池(电) 阳极 阴极 化学 电极 离子 电压 储能 电化学 化学工程 分析化学(期刊) 电气工程 功率(物理) 热力学 有机化学 物理化学 工程类 物理
作者
John B. Goodenough,Kyu‐Sung Park
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:135 (4): 1167-1176 被引量:9202
标识
DOI:10.1021/ja3091438
摘要

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘亚梅发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
科研通AI6应助ayintree采纳,获得10
4秒前
5秒前
6秒前
song发布了新的文献求助10
6秒前
华仔应助小飞机采纳,获得10
8秒前
sxpara发布了新的文献求助200
8秒前
9秒前
充电宝应助美满的冬卉采纳,获得10
9秒前
虚室生白完成签到,获得积分10
10秒前
Allen发布了新的文献求助10
10秒前
辛勤的小天鹅完成签到,获得积分10
11秒前
sijiangju发布了新的文献求助20
11秒前
彭于晏应助triwinster采纳,获得10
11秒前
chslj发布了新的文献求助10
12秒前
白色茉莉花完成签到,获得积分10
12秒前
13秒前
传统的雨文完成签到,获得积分10
13秒前
迪迦发布了新的文献求助10
13秒前
liangzhang02发布了新的文献求助10
13秒前
14秒前
包包琪完成签到 ,获得积分10
14秒前
浮游应助mxczsl采纳,获得10
15秒前
15秒前
无花果应助仲谋采纳,获得50
17秒前
17秒前
没有神的过往完成签到,获得积分10
17秒前
18秒前
跳跃的鱼发布了新的文献求助10
19秒前
19秒前
想做只小博狗完成签到,获得积分10
20秒前
DCC完成签到,获得积分10
21秒前
皮凡发布了新的文献求助10
22秒前
我的小宇宙呢完成签到,获得积分10
22秒前
23秒前
欢呼雍发布了新的文献求助10
23秒前
23秒前
含蓄凡柔发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206