亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Li-Ion Rechargeable Battery: A Perspective

电解质 电池(电) 阳极 阴极 化学 电极 离子 电压 储能 电化学 化学工程 分析化学(期刊) 电气工程 功率(物理) 热力学 有机化学 物理化学 工程类 物理
作者
John B. Goodenough,Kyu‐Sung Park
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:135 (4): 1167-1176 被引量:8113
标识
DOI:10.1021/ja3091438
摘要

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盐王爷发布了新的文献求助10
1分钟前
xhczrx完成签到,获得积分10
1分钟前
2分钟前
牧沛凝完成签到 ,获得积分10
2分钟前
2分钟前
盐王爷发布了新的文献求助10
3分钟前
盐王爷发布了新的文献求助20
3分钟前
4分钟前
树子发布了新的文献求助10
4分钟前
mmyhn应助科研通管家采纳,获得10
4分钟前
树子完成签到,获得积分10
4分钟前
豆乳米麻薯完成签到 ,获得积分10
5分钟前
MMMgao完成签到 ,获得积分10
5分钟前
盐王爷发布了新的文献求助10
5分钟前
我和你完成签到 ,获得积分10
5分钟前
6分钟前
盐王爷完成签到,获得积分10
6分钟前
6分钟前
搜集达人应助科研通管家采纳,获得10
8分钟前
NexusExplorer应助天天开心采纳,获得10
9分钟前
9分钟前
gyx发布了新的文献求助10
9分钟前
9分钟前
天天开心发布了新的文献求助10
9分钟前
传奇3应助和敬清寂采纳,获得10
9分钟前
9分钟前
和敬清寂发布了新的文献求助10
9分钟前
和敬清寂完成签到,获得积分10
10分钟前
10分钟前
复印件发布了新的文献求助10
10分钟前
10分钟前
mmyhn应助科研通管家采纳,获得40
10分钟前
秋秋秋发布了新的文献求助10
10分钟前
Owen应助秋秋秋采纳,获得10
10分钟前
11分钟前
桐桐应助复印件采纳,获得10
11分钟前
背完单词好睡觉完成签到 ,获得积分10
12分钟前
mmyhn应助科研通管家采纳,获得20
12分钟前
12分钟前
13分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052540
求助须知:如何正确求助?哪些是违规求助? 2709798
关于积分的说明 7418198
捐赠科研通 2354370
什么是DOI,文献DOI怎么找? 1245912
科研通“疑难数据库(出版商)”最低求助积分说明 605933
版权声明 595921