材料科学
阴极
锂(药物)
电池(电)
氧气
离子
化学工程
锂离子电池
无机化学
化学
物理化学
功率(物理)
有机化学
内分泌学
工程类
物理
医学
量子力学
作者
Huanqiao Song,Mingsheng Luo,Aimei Wang
标识
DOI:10.1021/acsami.6b13814
摘要
Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV3O8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g-1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g-1, respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g-1. The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V4+) and the attendant oxygen vacancies into LiV3O8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV3O8 without detectable V4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI