材料科学
聚合物太阳能电池
活动层
聚合物
阴极
化学工程
工作职能
能量转换效率
图层(电子)
光活性层
光电子学
纳米技术
复合材料
物理化学
化学
工程类
薄膜晶体管
作者
Wonho Lee,Seonju Jeong,Changyeon Lee,Gibok Han,Changsoon Cho,Jung‐Yong Lee,Bumjoon J. Kim
标识
DOI:10.1002/aenm.201602812
摘要
Interfaces between the photoactive layers and electrodes play critical roles in controlling the performance of optoelectronic devices. Herein, a novel nonconjugated polymer additive (nPA), poly(2‐vinylpyridine) (P2VP), is reported for modifying the interfaces between the bulk‐heterojunction (BHJ) and cathode/metal oxide (MO) layers. The P2VP nPA enables remarkably enhanced power conversion efficiencies (PCEs) and ambient stability in different types of polymer solar cells (PSCs). Importantly, interfacial engineering can be achieved during deposition of the P2VP nPA‐containing BHJ active layer via simple, one‐step solution processing. The P2VP nPA has much higher surface energy than the BHJ active components and stronger interaction with the surface of MO, which affords spontaneous vertical phase separation from the BHJ layer on the MO surface by one‐step solution processing. The self‐assembled P2VP layer substantially reduces the work function and surface defect density of MO, thereby minimizing the charge‐extraction barrier and increasing the PCEs of the PSCs significantly, i.e., PTB7‐Th:PC 71 BM (10.53%→11.14%), PTB7:PC 71 BM (7.37%→8.67%), and PTB7‐Th:P(NDI2HD‐T) all‐PSCs (5.52%→6.14%). In addition, the lifetimes of the PSCs are greatly improved by the use of the P2VP nPA.
科研通智能强力驱动
Strongly Powered by AbleSci AI