Targeted Next-Generation Sequencing Successfully Detects Causative Genes in Chinese Patients with Hereditary Hearing Loss

听力损失 遗传学 基因 生物 外显子 DNA测序 人口 突变 等位基因 医学 听力学 环境卫生
作者
Siqi Chen,Dong Cheng,Qi Wang,Zhen Zhong,Yu Qi,Xiaomei Ke,Yuhe Liu
出处
期刊:Genetic Testing and Molecular Biomarkers [Mary Ann Liebert, Inc.]
卷期号:20 (11): 660-665 被引量:39
标识
DOI:10.1089/gtmb.2016.0051
摘要

Aims: We attempted to identify the genetic epidemiology of hereditary hearing loss among the Chinese Han population using next-generation sequencing (NGS). Materials and Methods: The entire length of the genes GJB2, SLC26A4, and GJB3, as well as exons of 57 additional candidate genes were sequenced from 116 individuals suffering from hearing loss. Results: Thirty potentially causative mutations from these 60 genes were identified as the likely etiologies of hearing loss in 67 of the cases. In our study, SLC26A4 and GJB2 were the most frequently affected genes among the Chinese Han population with hearing loss. Collectively, they account for 52.8% of the cases, followed by MTRNR1, PCDH15, and TECTA. These data also illustrate that NGS can be used to identify rare alleles responsible for hereditary hearing loss: 22 of the 30 (73.3%) genes identified with mutations are rarely mutated in hereditary hearing loss and only account for 21.5% (42/195) of the total mutation frequency, explaining no more than 2% for each gene. These rarely mutated genes would be missed by conventional diagnostic sequencing approaches. Conclusions: NGS can be used effectively to identify both the common and rare genes causing hereditary hearing loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ankh发布了新的文献求助10
1秒前
张城豪发布了新的文献求助10
1秒前
闪闪半芹发布了新的文献求助10
1秒前
4秒前
5秒前
5秒前
HtheJ发布了新的文献求助10
5秒前
6秒前
在水一方应助健康的妙菱采纳,获得10
6秒前
CodeCraft应助feng采纳,获得20
6秒前
希望天下0贩的0应助fragile采纳,获得10
6秒前
Jessy发布了新的文献求助30
7秒前
吴晗硕查文献完成签到 ,获得积分10
7秒前
充电宝应助周杰采纳,获得10
7秒前
科研通AI5应助HeLL0采纳,获得10
7秒前
可耐的芮完成签到 ,获得积分10
7秒前
比奇堡力工关注了科研通微信公众号
8秒前
zaizai关注了科研通微信公众号
9秒前
9秒前
lucky应助123采纳,获得10
9秒前
苯环超人完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
13秒前
没影子的人完成签到,获得积分10
13秒前
星辰大海应助HtheJ采纳,获得10
14秒前
热情冰萍发布了新的文献求助10
14秒前
14秒前
15秒前
划分完成签到 ,获得积分10
16秒前
坤坤发布了新的文献求助10
17秒前
可耐的芮发布了新的文献求助10
17秒前
Owen应助畅快的明杰采纳,获得10
17秒前
冷傲老九发布了新的文献求助30
17秒前
18秒前
zhang完成签到 ,获得积分10
18秒前
Wayne72完成签到,获得积分0
19秒前
镜花水月完成签到,获得积分10
19秒前
伊酒发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814