SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate

克拉斯 基因敲除 癌症研究 结直肠癌 细胞凋亡 细胞生长 转移 基质凝胶 分子生物学 生物 化学 癌症 遗传学 血管生成
作者
Chi Chun Wong,Yun Qian,Xiaona Li,Jiaying Xu,Wei Kang,Joanna H.M. Tong,Ka‐Fai To,Jin Y,Weilin Li,Huarong Chen,Minnie Y.Y. Go,Jian‐Lin Wu,Ka‐Wing Cheng,Simon S.M. Ng,Joseph J.�Y. Sung,Zongwei Cai,Jun Yu
出处
期刊:Gastroenterology [Elsevier]
卷期号:151 (5): 945-960.e6 被引量:109
标识
DOI:10.1053/j.gastro.2016.07.011
摘要

Background & AimsMany colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS.MethodsWe measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice.ResultsLevels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal–regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration.ConclusionsSLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal–regulated kinase signaling and reduces oxidative stress. Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal–regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration. SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal–regulated kinase signaling and reduces oxidative stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助专注大神采纳,获得20
1秒前
梨llll完成签到,获得积分10
2秒前
Jcm完成签到,获得积分10
3秒前
4秒前
艳艳子发布了新的文献求助10
4秒前
7秒前
研友_VZG7GZ应助小朱采纳,获得10
9秒前
田様应助鲤鱼豌豆采纳,获得10
11秒前
11秒前
12秒前
香蕉觅云应助justonce采纳,获得10
13秒前
小fairy侠发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
Y.完成签到,获得积分10
16秒前
16秒前
18秒前
lvbitjy完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
zhangzhang发布了新的文献求助10
21秒前
华仔应助氨氯地平采纳,获得10
21秒前
萧然完成签到,获得积分10
21秒前
Bonnienuit完成签到 ,获得积分10
21秒前
小朱发布了新的文献求助10
22秒前
梦田完成签到 ,获得积分10
22秒前
meow完成签到 ,获得积分10
22秒前
22秒前
反方向的钟完成签到,获得积分10
23秒前
23秒前
24秒前
chen完成签到,获得积分10
24秒前
25秒前
犹豫的小土豆完成签到,获得积分10
26秒前
诚心淇发布了新的文献求助10
27秒前
28秒前
28秒前
搜集达人应助beiyoumilu采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443606
求助须知:如何正确求助?哪些是违规求助? 3039866
关于积分的说明 8978309
捐赠科研通 2728270
什么是DOI,文献DOI怎么找? 1496480
科研通“疑难数据库(出版商)”最低求助积分说明 691647
邀请新用户注册赠送积分活动 689175