A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的白卉完成签到 ,获得积分10
2秒前
黄黄黄完成签到 ,获得积分20
2秒前
初夏的百褶裙完成签到,获得积分10
2秒前
sora完成签到,获得积分10
2秒前
12秒前
按时毕业完成签到,获得积分20
15秒前
20秒前
Xiaohui_Yu完成签到,获得积分10
22秒前
范白容完成签到 ,获得积分0
24秒前
花不语发布了新的文献求助10
24秒前
完美世界应助花不语采纳,获得10
38秒前
小于要毕业完成签到 ,获得积分10
40秒前
xuxu完成签到 ,获得积分10
41秒前
航行天下完成签到 ,获得积分10
51秒前
饱满香彤完成签到 ,获得积分10
53秒前
朴艺晨完成签到 ,获得积分10
59秒前
dajiejie完成签到 ,获得积分10
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
Fresh完成签到 ,获得积分10
1分钟前
勤奋完成签到 ,获得积分10
1分钟前
积极凌兰完成签到 ,获得积分10
1分钟前
changfox完成签到,获得积分10
1分钟前
哎呀哎呀呀完成签到,获得积分10
1分钟前
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
管夜白发布了新的文献求助10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
marc107完成签到,获得积分10
1分钟前
求助人员发布了新的文献求助10
1分钟前
guajiguaji完成签到,获得积分10
1分钟前
管夜白完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
打打应助绝望的老实人采纳,获得10
1分钟前
怎么办完成签到 ,获得积分10
1分钟前
小白鼠完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
满意的伊完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689402
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118