A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
贪玩的又莲完成签到 ,获得积分10
2秒前
2秒前
科研菜狗完成签到,获得积分10
3秒前
3秒前
jayjayh发布了新的文献求助10
3秒前
大个应助可爱绮采纳,获得10
3秒前
Nariy完成签到,获得积分10
4秒前
cheryjay发布了新的文献求助10
5秒前
6秒前
窦鞅发布了新的文献求助10
6秒前
yin发布了新的文献求助20
6秒前
我是老大应助lessismore采纳,获得10
6秒前
柏小霜发布了新的文献求助10
7秒前
7秒前
7秒前
幽默白秋关注了科研通微信公众号
7秒前
杨胜菲发布了新的文献求助10
7秒前
8秒前
爆米花应助刘洋采纳,获得10
8秒前
8秒前
lqy完成签到 ,获得积分10
8秒前
yangsi完成签到 ,获得积分10
8秒前
汽水完成签到,获得积分10
9秒前
李嘉莹发布了新的文献求助10
10秒前
科研通AI6应助Mort采纳,获得10
10秒前
FashionBoy应助CC采纳,获得10
10秒前
rongyiming发布了新的文献求助10
11秒前
12秒前
13秒前
英姑应助汽水采纳,获得10
13秒前
14秒前
科目三应助萝萝山大王采纳,获得30
14秒前
藤与蔓完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571591
求助须知:如何正确求助?哪些是违规求助? 4656832
关于积分的说明 14718078
捐赠科研通 4597681
什么是DOI,文献DOI怎么找? 2523318
邀请新用户注册赠送积分活动 1494146
关于科研通互助平台的介绍 1464292