A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International 卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡菠萝完成签到,获得积分10
1秒前
壮观曼凡发布了新的文献求助10
1秒前
sxw完成签到 ,获得积分20
2秒前
2秒前
乐乐应助松谦采纳,获得10
3秒前
5秒前
神勇迎蓉完成签到,获得积分10
7秒前
7秒前
7秒前
cloud完成签到,获得积分10
9秒前
10秒前
科研混子完成签到,获得积分10
11秒前
Cccsy完成签到 ,获得积分10
14秒前
16秒前
无辜的朋友完成签到,获得积分10
17秒前
hhhm完成签到,获得积分10
17秒前
17秒前
digiwood完成签到,获得积分10
18秒前
18秒前
19秒前
荔枝要吃冰的完成签到 ,获得积分10
19秒前
626发布了新的文献求助10
20秒前
20秒前
YTT完成签到,获得积分10
20秒前
大模型应助朱11采纳,获得10
21秒前
hhhm发布了新的文献求助10
22秒前
小胡同学发布了新的文献求助10
23秒前
24秒前
虚拟的秋寒完成签到,获得积分20
24秒前
25秒前
25秒前
27秒前
28秒前
CZC完成签到,获得积分10
28秒前
29秒前
30秒前
huanger完成签到,获得积分10
31秒前
玖月完成签到 ,获得积分10
31秒前
小胡同学完成签到,获得积分10
32秒前
626完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194