A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rebeccahu发布了新的文献求助10
刚刚
微笑的井发布了新的文献求助10
刚刚
TOBET发布了新的文献求助20
1秒前
wxy完成签到,获得积分10
1秒前
无色完成签到,获得积分20
2秒前
2秒前
zzzzzzy发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
新能源牛马2完成签到,获得积分20
2秒前
2秒前
XX发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
zjc1111发布了新的文献求助10
4秒前
共享精神应助彭日晓采纳,获得10
5秒前
峰ww发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
充电宝应助勤劳dandan采纳,获得30
6秒前
7秒前
7秒前
孙燕应助Dding采纳,获得20
7秒前
7秒前
8秒前
YY发布了新的文献求助10
8秒前
8秒前
mxl发布了新的文献求助30
9秒前
yans发布了新的文献求助10
9秒前
9秒前
tamo发布了新的文献求助10
10秒前
丰富的大地完成签到,获得积分10
10秒前
ABCofMEDICIBE发布了新的文献求助10
10秒前
haiqi发布了新的文献求助10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788