A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kenzonvay发布了新的文献求助10
刚刚
Luna完成签到 ,获得积分10
2秒前
汉堡包应助chenzhi采纳,获得10
5秒前
充电宝应助dd99081采纳,获得10
6秒前
6秒前
花花完成签到 ,获得积分10
8秒前
8秒前
老谢发布了新的文献求助10
9秒前
check003完成签到,获得积分10
9秒前
fortune完成签到,获得积分10
10秒前
彳亍完成签到,获得积分10
12秒前
13秒前
15秒前
Lin完成签到,获得积分10
16秒前
16秒前
斯文败类应助乐观鑫鹏采纳,获得10
18秒前
浮游应助LHP采纳,获得10
19秒前
Lulul发布了新的文献求助10
20秒前
bai完成签到,获得积分10
20秒前
十一玮发布了新的文献求助10
21秒前
xdmhv完成签到,获得积分10
25秒前
26秒前
Akim应助Tian采纳,获得10
28秒前
水水的完成签到 ,获得积分10
30秒前
球球尧伞耳完成签到,获得积分10
33秒前
John完成签到,获得积分10
34秒前
36秒前
酷波er应助纯真猕猴桃采纳,获得10
36秒前
37秒前
didi发布了新的文献求助10
37秒前
万能图书馆应助qianqina采纳,获得30
37秒前
暮烟应助Lulul采纳,获得10
37秒前
虚幻的冬瓜完成签到 ,获得积分10
40秒前
小翼发布了新的文献求助10
42秒前
44秒前
47秒前
glay发布了新的文献求助10
51秒前
想睡觉的小笼包完成签到 ,获得积分10
51秒前
称心映寒完成签到 ,获得积分10
53秒前
isak完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969