亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
lxd完成签到 ,获得积分10
4秒前
pzz完成签到,获得积分10
5秒前
Grinde发布了新的文献求助10
7秒前
大胆的碧菡完成签到,获得积分10
7秒前
薄荷源星球完成签到 ,获得积分10
7秒前
能干秋珊完成签到,获得积分10
10秒前
11秒前
msn00完成签到 ,获得积分10
14秒前
18秒前
18秒前
21秒前
23秒前
边雨完成签到 ,获得积分10
23秒前
自信寻真发布了新的文献求助10
26秒前
霸气乐菱发布了新的文献求助10
26秒前
27秒前
27秒前
烟花应助我心向明月采纳,获得10
29秒前
missing完成签到 ,获得积分10
29秒前
30秒前
30秒前
Pauline完成签到 ,获得积分10
31秒前
32秒前
GDL发布了新的文献求助10
34秒前
鲤鱼小鸽子完成签到,获得积分20
34秒前
34秒前
梦梦发布了新的文献求助10
38秒前
着急的猴发布了新的文献求助80
42秒前
深情安青应助GDL采纳,获得10
43秒前
52秒前
jj发布了新的文献求助20
53秒前
涵涵涵hh完成签到 ,获得积分10
54秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
绫小路发布了新的文献求助10
1分钟前
开朗若之完成签到 ,获得积分10
1分钟前
彭于晏应助梦梦采纳,获得10
1分钟前
可爱的函函应助jj采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671