亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助ksak607155采纳,获得10
3秒前
power完成签到,获得积分10
4秒前
忞航完成签到 ,获得积分10
14秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
迷你小熊猫完成签到,获得积分10
22秒前
35秒前
852应助迷你小熊猫采纳,获得10
42秒前
xxxxx炒菜完成签到,获得积分10
46秒前
xxxxx炒菜发布了新的文献求助50
50秒前
52秒前
55秒前
瘦瘦以亦发布了新的文献求助10
55秒前
独特的高山完成签到,获得积分10
55秒前
58秒前
58秒前
科研通AI2S应助十六采纳,获得10
1分钟前
FashionBoy应助独特的高山采纳,获得10
1分钟前
1分钟前
万能图书馆应助daodao采纳,获得10
1分钟前
脸小呆呆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hxjnx发布了新的文献求助10
1分钟前
daodao完成签到,获得积分10
1分钟前
Amber发布了新的文献求助30
1分钟前
1分钟前
1分钟前
hxjnx完成签到,获得积分20
1分钟前
单薄绿竹完成签到,获得积分10
1分钟前
ksak607155发布了新的文献求助10
1分钟前
ksak607155完成签到,获得积分10
1分钟前
yanglinhai完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
beiwei完成签到 ,获得积分10
1分钟前
sy完成签到,获得积分10
1分钟前
十六发布了新的文献求助10
1分钟前
1分钟前
ZZY发布了新的文献求助10
1分钟前
Krim完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590427
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795204
捐赠科研通 4631648
什么是DOI,文献DOI怎么找? 2532710
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617