A deep learning approach to dental restoration classification from bitewing and periapical radiographs.

接收机工作特性 汞齐(化学) 射线照相术 牙科 卷积神经网络 医学 口腔正畸科 曲线下面积 人工智能 计算机科学 放射科 电极 药代动力学 内科学 物理化学 化学
作者
Özcan Karataş,Nazire Nurdan Çakır,Saban Suat Ozsariyildiz,Hatice Cansu Kış,Sezer Demirbuğa,Cem A. Gürgan
出处
期刊:Quintessence International [Quintessence Publishing Company]
卷期号:52 (7): 568-574 被引量:3
标识
DOI:10.3290/j.qi.b1244461
摘要

Objective The aim of this study was to examine the success of deep learning-based convolutional neural networks (CNN) in the detection and differentiation of amalgam, composite resin, and metal-ceramic restorations from bitewing and periapical radiographs. Method and materials Five hundred and fifty bitewing and periapical radiographs were used. Eighty percent of the images were used for training, and 20% were left for testing. Twenty percent of the images allocated for training were then used for validation during learning. The image classification model was based on the application of CNN. The model used Resnet34 architecture, which is pre-trained on the ImageNet dataset. Average sensitivity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for performance evaluation of the model. Results The model training loss was 0.13, and the validation loss was 0.63. The independent test group result was 0.67. Amalgam AUC was 0.95, composite AUC was 0.95, and metal-ceramic AUC was 1.00. The average AUC was 0.97. The false positive rate in the validation set was 18, the false negative rate was 18, the true positive rate was 60, and the true negative rate was 138. The true positive rate was 0.82 for amalgam, 0.75 for composite, and 0.73 for metal-ceramic. Conclusion Deep learning-based CNNs from periapical and bitewing radiographs appear to be a promising technique for the detection and differentiation of restorations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joylyn发布了新的文献求助10
刚刚
泡芙完成签到,获得积分10
1秒前
1秒前
Aprilapple完成签到,获得积分10
2秒前
2秒前
体贴怜翠完成签到,获得积分10
3秒前
完美世界应助苻谷丝采纳,获得10
3秒前
乔哥儿完成签到,获得积分10
3秒前
共享精神应助phil采纳,获得10
4秒前
小徐801完成签到,获得积分10
5秒前
YZMVP发布了新的文献求助10
5秒前
5秒前
yiren完成签到,获得积分10
6秒前
7秒前
三水完成签到,获得积分10
7秒前
nora发布了新的文献求助10
7秒前
9秒前
xiadu发布了新的文献求助10
10秒前
Lsy完成签到,获得积分10
10秒前
10秒前
10秒前
13秒前
马子妍发布了新的文献求助10
13秒前
隐形曼青应助粥mi采纳,获得10
14秒前
天天完成签到 ,获得积分10
15秒前
XIEQ完成签到,获得积分10
16秒前
酷波er应助Yuchaoo采纳,获得10
16秒前
微微发布了新的文献求助20
16秒前
老衲发布了新的文献求助10
16秒前
phil发布了新的文献求助10
16秒前
七七完成签到,获得积分10
17秒前
体贴怜翠发布了新的文献求助10
17秒前
小白应助XIEQ采纳,获得10
19秒前
20秒前
23秒前
woobinhua完成签到,获得积分10
23秒前
今后应助brianzk1989采纳,获得10
23秒前
vv发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132