Multidimensional Local Binary Pattern for Hyperspectral Image Classification

局部二进制模式 高光谱成像 可解释性 模式识别(心理学) 人工智能 特征(语言学) 计算机科学 光谱空间 空间分析 特征向量 特征提取 二进制数 数学 图像(数学) 直方图 语言学 哲学 统计 算术 纯数学
作者
Yanshan Li,Haojin Tang,Weixin Xie,Wenhan Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:24
标识
DOI:10.1109/tgrs.2021.3069505
摘要

For the large amount of spatial and spectral information contained in hyperspectral image (HSI), feature description of HSI has attracted widespread concern in recent years. Existing deep learning-based HSI feature description algorithms require a large number of training samples and have poor interpretability. Therefore, it is necessary to develop an efficient HSI features description algorithm with interpretability based on machine learning. Local binary pattern (LBP) is a classical descriptor used to extract the local spatial texture features of images, which has been widely applied to image feature description and matching. However, the existing LBP algorithms for HSI are based on the single-dimensional description, which leads to the limitations on the expression of spatial–spectral information. Therefore, a multidimensional LBP (MDLBP) based on Clifford algebra for HSI is proposed in this article, which is able to extract spatial–spectral feature from multiple dimensions. First, with the theory of the Clifford algebra, a new representation of HSI including spatial and spectral information is built. Second, the geometric relationship between the local geometry of HSI in Clifford algebra space is calculated to realize the local multidimensional description of the local spatial–spectral information. Finally, a novel LBP coding algorithm for HSI is implemented based on the local multidimensional description to calculate the feature descriptor of HSI. The experimental results on HSI classification show that our proposed MDLBP algorithm can achieve higher accuracy than the representative spatial–spectral features and the existing LBP algorithms, especially in the scenery of small-scale training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹筏过海应助Angie采纳,获得30
刚刚
ding应助渐安采纳,获得10
1秒前
changnan完成签到,获得积分10
1秒前
1秒前
顾矜应助内向翰采纳,获得10
1秒前
Reese发布了新的文献求助30
2秒前
2秒前
4秒前
acor发布了新的文献求助10
4秒前
changnan发布了新的文献求助10
4秒前
医痞子完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
JamesPei应助llg采纳,获得10
7秒前
七里香完成签到,获得积分10
7秒前
不配.应助LJ采纳,获得20
8秒前
8秒前
8秒前
pluto应助木木木采纳,获得10
8秒前
9秒前
大山完成签到,获得积分10
9秒前
9秒前
莫泊桑发布了新的文献求助10
10秒前
张张张完成签到,获得积分10
10秒前
乐乐乐乐乐乐应助franklove采纳,获得30
11秒前
万能图书馆应助adeno采纳,获得10
11秒前
12秒前
Vine完成签到,获得积分10
12秒前
wxx发布了新的文献求助10
13秒前
傻傻发布了新的文献求助10
14秒前
17秒前
17秒前
tom81882发布了新的文献求助30
18秒前
lanshuitai发布了新的文献求助10
18秒前
数学王子完成签到,获得积分10
19秒前
kavy完成签到,获得积分10
19秒前
彩色芷完成签到,获得积分10
19秒前
淡然子轩发布了新的文献求助10
19秒前
hambur发布了新的文献求助10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625