From clustering to clustering ensemble selection: A review

聚类分析 计算机科学 数据挖掘 数据流聚类 集成学习 模糊聚类 相关聚类 人工智能 高维数据聚类 机器学习 共识聚类 CURE数据聚类算法 集合预报 约束聚类 单连锁聚类 模式识别(心理学) 树冠聚类算法
作者
Keyvan Golalipour,Ebrahim Akbari,Seyed Saeed Hamidi,Malrey Lee,Rasul Enayatifar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:104: 104388-104388 被引量:86
标识
DOI:10.1016/j.engappai.2021.104388
摘要

Clustering, as an unsupervised learning, is aimed at discovering the natural groupings of a set of patterns, points, or objects. In clustering algorithms, a significant problem is the absence of a deterministic approach based on which users can decide which clustering method best matches a given set of input data. This is due to using certain criteria for optimization. Clustering ensemble as a knowledge reuse offers a solution to solve the challenges inherent in clustering. It seeks to explore results of high stability and robustness by composing computed solutions achieved by base clustering algorithms without getting access to the features. Combining base clusterings together degrades the quality of the final solution when low-quality ensemble members are used. Several researchers in this field have suggested the concept of clustering ensemble selection for the aim of selecting a subset of base clustering based on quality and diversity. While clustering ensemble makes a combination of all ensemble members, clustering ensemble selection chooses a subset of ensemble members and forms a smaller cluster ensemble that performs better than the clustering ensemble. This survey includes the historical development of data clustering that makes an overview on basic clustering techniques, discusses clustering ensemble algorithms including ensemble generation mechanisms and consensus function, and point out clustering ensemble selection techniques with considering quality and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助99ldt采纳,获得10
1秒前
1秒前
务实一斩发布了新的文献求助10
1秒前
jy完成签到 ,获得积分20
2秒前
健壮的涑完成签到 ,获得积分10
2秒前
科研通AI5应助勤劳影子采纳,获得10
3秒前
栗子发布了新的文献求助10
3秒前
4秒前
XHT驳回了LL应助
5秒前
5秒前
5秒前
hyp发布了新的文献求助10
5秒前
6秒前
7秒前
微笑香薇发布了新的文献求助10
7秒前
777完成签到,获得积分10
7秒前
8秒前
8秒前
黄丽军发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
小彻完成签到,获得积分10
9秒前
慕青应助研友_nxGqeL采纳,获得20
9秒前
9秒前
10秒前
shang发布了新的文献求助10
10秒前
Giroro_roro完成签到,获得积分10
10秒前
11秒前
完美世界应助橘子采纳,获得10
11秒前
三口发布了新的文献求助10
11秒前
CipherSage应助lisali采纳,获得10
12秒前
夏天来了发布了新的文献求助30
12秒前
dmj发布了新的文献求助10
12秒前
完美世界应助绿夏采纳,获得30
12秒前
dong发布了新的文献求助10
13秒前
ssssssssci完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246