New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (11): 943-953 被引量:38
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
哈利波特发布了新的文献求助10
刚刚
nns完成签到,获得积分10
2秒前
hqq2312发布了新的文献求助10
3秒前
顾北发布了新的文献求助10
3秒前
陈棋清完成签到,获得积分10
4秒前
liyingyan发布了新的文献求助30
4秒前
5秒前
wulalala完成签到,获得积分10
7秒前
行隐应助rossliyi采纳,获得10
9秒前
33097完成签到,获得积分10
11秒前
雪白问兰应助Yan采纳,获得10
12秒前
13秒前
18秒前
快乐女孩发布了新的文献求助10
19秒前
观鹤轩完成签到,获得积分10
20秒前
lenny发布了新的文献求助10
21秒前
22秒前
赘婿应助gyyzj采纳,获得10
22秒前
wnw关闭了wnw文献求助
23秒前
24秒前
LSY关注了科研通微信公众号
25秒前
桐桐应助小广采纳,获得10
26秒前
liyingyan完成签到,获得积分10
26秒前
小马甲应助禹丹烟采纳,获得10
27秒前
朱由校完成签到,获得积分10
27秒前
Galaxy8完成签到,获得积分10
28秒前
29秒前
斯文败类应助nly采纳,获得10
30秒前
火星上的鸵鸟关注了科研通微信公众号
31秒前
含糊的万宝路完成签到,获得积分20
31秒前
所所应助观鹤轩采纳,获得10
32秒前
33秒前
Hello应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
李健应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905