New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (11): 943-953 被引量:44
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助丑丑虎采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
dz发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
ljlj完成签到,获得积分10
4秒前
5秒前
科研通AI5应助虔三愿采纳,获得10
5秒前
情怀应助一颗柠檬采纳,获得10
6秒前
脑洞疼应助Zed采纳,获得10
6秒前
万能图书馆应助Zed采纳,获得10
6秒前
7秒前
Benny发布了新的文献求助10
7秒前
7秒前
秀丽的盈发布了新的文献求助10
7秒前
leonarda1314发布了新的文献求助10
8秒前
leeteukxx发布了新的文献求助10
9秒前
小贝发布了新的文献求助10
9秒前
Sugar发布了新的文献求助10
9秒前
77完成签到 ,获得积分10
10秒前
10秒前
prove发布了新的文献求助10
10秒前
思源应助拼搏初之采纳,获得10
10秒前
meng若发布了新的文献求助10
10秒前
TiAmo发布了新的文献求助10
11秒前
淀粉肠发布了新的文献求助10
12秒前
lsx发布了新的文献求助10
12秒前
13秒前
桐桐应助无心的芸采纳,获得10
14秒前
14秒前
美丽大方发布了新的文献求助10
15秒前
可耐的嫣娆完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183642
求助须知:如何正确求助?哪些是违规求助? 4369861
关于积分的说明 13607883
捐赠科研通 4221715
什么是DOI,文献DOI怎么找? 2315442
邀请新用户注册赠送积分活动 1314022
关于科研通互助平台的介绍 1262893