New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (11): 943-953 被引量:38
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助君衡采纳,获得20
1秒前
rainny完成签到,获得积分10
1秒前
华仔应助略略略采纳,获得10
1秒前
过河卒子发布了新的文献求助10
2秒前
5秒前
xh发布了新的文献求助10
5秒前
暴躁的幼荷完成签到 ,获得积分10
6秒前
科研通AI2S应助dzjin采纳,获得10
6秒前
离开时是天命完成签到,获得积分10
8秒前
拾柒完成签到 ,获得积分10
8秒前
hml123发布了新的文献求助10
8秒前
8秒前
coco应助halona采纳,获得20
9秒前
小二郎应助潇公子采纳,获得10
11秒前
12秒前
攀攀完成签到,获得积分10
13秒前
CipherSage应助Margaret采纳,获得10
13秒前
852应助xh采纳,获得10
13秒前
weijie发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
tianji完成签到,获得积分20
18秒前
19秒前
JHcHuN发布了新的文献求助10
19秒前
21秒前
地球发布了新的文献求助10
21秒前
潇公子发布了新的文献求助10
21秒前
22秒前
健壮书包完成签到,获得积分10
22秒前
许珩完成签到,获得积分10
23秒前
25秒前
香蕉觅云应助JHcHuN采纳,获得10
25秒前
小胡发布了新的文献求助30
25秒前
鸥鸥完成签到,获得积分10
25秒前
过河卒子完成签到,获得积分10
28秒前
tiantian完成签到,获得积分10
28秒前
28秒前
29秒前
立冬完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3105137
求助须知:如何正确求助?哪些是违规求助? 2756288
关于积分的说明 7638684
捐赠科研通 2410249
什么是DOI,文献DOI怎么找? 1278761
科研通“疑难数据库(出版商)”最低求助积分说明 617495
版权声明 599262