New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (11): 943-953 被引量:44
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助东木耳语采纳,获得10
2秒前
2秒前
zyq完成签到,获得积分10
3秒前
煎饼煎饼完成签到,获得积分10
3秒前
3秒前
qvbihss发布了新的文献求助10
3秒前
Fairy完成签到,获得积分10
4秒前
迷人不凡完成签到,获得积分10
4秒前
杨明ym完成签到,获得积分10
4秒前
呱啦呱啦完成签到,获得积分20
4秒前
1111发布了新的文献求助10
5秒前
Alice发布了新的文献求助20
5秒前
5秒前
5秒前
秋糜发布了新的文献求助10
5秒前
Maximuszhao发布了新的文献求助20
6秒前
tingalan完成签到,获得积分0
6秒前
鲤鱼越越发布了新的文献求助50
6秒前
Shawn发布了新的文献求助30
6秒前
Ava应助666采纳,获得10
7秒前
李健的小迷弟应助木木采纳,获得10
7秒前
小鱼吐泡泡完成签到,获得积分10
7秒前
7秒前
xxfsx应助欢喜的难破采纳,获得10
9秒前
9秒前
10秒前
无花果应助勤奋采纳,获得10
10秒前
倾之完成签到 ,获得积分10
10秒前
小雨发布了新的文献求助10
11秒前
11秒前
bkagyin应助1111采纳,获得10
11秒前
Hello应助ZN采纳,获得10
12秒前
科研通AI6应助YEeeeee采纳,获得10
12秒前
soar发布了新的文献求助30
12秒前
13秒前
顺利凌文发布了新的文献求助10
14秒前
周同庆发布了新的文献求助10
15秒前
东木耳语完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406273
求助须知:如何正确求助?哪些是违规求助? 4524343
关于积分的说明 14097694
捐赠科研通 4438130
什么是DOI,文献DOI怎么找? 2435995
邀请新用户注册赠送积分活动 1428126
关于科研通互助平台的介绍 1406280