New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (11): 943-953 被引量:44
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ddlm采纳,获得150
1秒前
rain发布了新的文献求助10
2秒前
2秒前
Miao完成签到,获得积分10
2秒前
上官若男应助海洋球采纳,获得10
3秒前
太醉虾米发布了新的文献求助10
4秒前
7秒前
zhoumomomo完成签到,获得积分10
7秒前
泊凉少年发布了新的文献求助10
7秒前
7秒前
8秒前
Eric完成签到,获得积分20
9秒前
YTT发布了新的文献求助10
10秒前
liuhulang发布了新的文献求助30
11秒前
爆米花应助安安采纳,获得10
11秒前
晓风残月发布了新的文献求助10
12秒前
Sandwich发布了新的文献求助10
12秒前
12秒前
13秒前
云游归尘发布了新的文献求助10
13秒前
13秒前
西一阿铭发布了新的文献求助10
13秒前
120ach发布了新的文献求助10
14秒前
14秒前
科目三应助汪汪队立大功采纳,获得10
14秒前
squeak完成签到,获得积分10
15秒前
15秒前
星辰大海应助风清扬采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
初心完成签到 ,获得积分10
16秒前
16秒前
飞鸟完成签到,获得积分10
17秒前
18秒前
18秒前
学术蛔虫发布了新的文献求助10
18秒前
19秒前
19秒前
共享精神应助粗犷的汲采纳,获得50
19秒前
19秒前
科目三应助犹豫柜子采纳,获得10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443221
求助须知:如何正确求助?哪些是违规求助? 4553119
关于积分的说明 14241113
捐赠科研通 4474726
什么是DOI,文献DOI怎么找? 2452134
邀请新用户注册赠送积分活动 1443079
关于科研通互助平台的介绍 1418721