转移
生物
谷氨酰胺
癌症研究
重编程
连环素
癌症
谷氨酰胺酶
细胞生物学
结直肠癌
Wnt信号通路
癌细胞
生物化学
细胞
信号转导
遗传学
氨基酸
作者
Qingling Hua,Biying Zhang,Guojie Xu,Lanqing Wang,Haihong Wang,Zhenyu Lin,Dandan Yu,Jinghua Ren,Dejun Zhang,Lei Zhao,Tao� Zhang
出处
期刊:Oncogene
[Springer Nature]
日期:2021-10-04
卷期号:40 (46): 6443-6455
被引量:32
标识
DOI:10.1038/s41388-021-02023-w
摘要
Metastasis is the leading cause of colorectal cancer (CRC)-induced death. However, the underlying molecular mechanisms of CRC metastasis are poorly understood. Metabolic reprogramming is an intrinsic feature of cancer, which have complicated effects on cancer metastasis. Here, we find that a novel metastasis-related protein, cell migration-inducing and hyaluronan-binding protein (CEMIP), can act as a novel adaptor protein of O-GlcNAc transferase (OGT) to promote CRC metastasis through glutamine metabolic reprogramming. Mechanistically, CEMIP interacts with OGT and β-catenin, which leads to elevated O-GlcNAcylation of β-catenin and enhanced β-catenin nuclear translocation from cytomembrane. Furthermore, accumulated β-catenin in nucleus enhances the transcription of CEMIP to reciprocally regulate β-catenin and contributes to over-expression of glutaminase 1 and glutamine transporters (SLC1A5 and SLC38A2). Combinational inhibition of CEMIP and glutamine metabolism could dramatically attenuate the metastasis of CRC in vivo. Collectively, this study reveals the importance of glutamine metabolic reprogramming in CEMIP-induced CRC metastasis, indicating the great potential of CEMIP and glutamine metabolism for CRC metastasis prevention.
科研通智能强力驱动
Strongly Powered by AbleSci AI