单调函数
趋同(经济学)
类型(生物学)
数学
迭代学习控制
紧收敛
订单(交换)
弱收敛
应用数学
拓扑(电路)
勒贝格积分
正态收敛
控制理论(社会学)
算法
控制(管理)
计算机科学
离散数学
数学分析
收敛速度
组合数学
人工智能
生态学
频道(广播)
计算机网络
财务
计算机安全
经济
资产(计算机安全)
生物
经济增长
作者
Saleem Riaz,Hui Lin,Minhas Mahsud,Deeba Afzal,Ammar Alsinai,Murat Cancan
标识
DOI:10.1080/09720502.2021.1984567
摘要
The monotonic convergence of the PDα-type fractional-order iterative learning control algorithm is considered for a class of fractional-order linear systems. First, a theoretical analysis of the monotonic convergence of 1st and 2nd order PDα-type control algorithms is carried out in the typical terms of Lebesgue-p (Lp), and the sufficient conditions for their monotonic convergence are comprehended and extended to the case of N-order control algorithms; then the speed of convergence of the two is explained in detail. It is concluded that the conditions for convergence of the control algorithm are determined by the learning gain and the system's properties are together determined. Simulation experiment verifies the accuracy of proposed scheme and the validity of the control algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI