Cellular Traffic Prediction via a Deep Multi-Reservoir Regression Learning Network for Multi-Access Edge Computing

计算机科学 蜂窝网络 深度学习 交通生成模型 人工智能 分布式计算 网络拓扑 计算机网络
作者
Yingqi Li,Xiaochuan Sun,Haijun Zhang,Zhigang Li,Linlin Qin,Chenwei Sun,Zhanlin Ji
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 13-19 被引量:7
标识
DOI:10.1109/mwc.001.2100029
摘要

Cellular traffic prediction at mobile edges is extremely valuable to ultra high-reliability low-latency (URLLC) communication of 5G. Many network actions depend on this prediction technology, ranging from radio resource scheduling, edge node sharing, and traffic control, to network slicing and dynamic network function virtualization. However, accurate prediction for cellular traffic flow is a tough challenge, since irregular and dramatic fluctuations of network traffic, caused by continuous topology update and multifarious service requests, occur frequently. Motivated by these investigations, we propose a deep multi-reservoir regression learning network for cellular traffic prediction, called mRDLN, supporting multi-access edge computing. This architecture is a uniform and consistent system with functional modules of smoothing, feature extraction, and multi-reservoir regression. This is the first attempt to enhance deep neural computing considering a combined regression scheme in the framework of a deep belief network, where multiple echo state networks are integrated to perform local supervised learning instead of the original single approximator. On highly bursty cellular traffic traces, experimental simulations show that our mRDLN consistently outperforms the state-of-the-art models, and the superior prediction is further verified by means of statistical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XYY应助科研通管家采纳,获得20
刚刚
暴躁四叔应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
watertable应助科研通管家采纳,获得20
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
奋斗惊蛰应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
lhb3291发布了新的文献求助10
3秒前
在水一方应助耍酷的梦桃采纳,获得10
3秒前
冰阔罗发布了新的文献求助10
3秒前
小葵ty发布了新的文献求助10
4秒前
琪凯定理发布了新的文献求助10
4秒前
5秒前
5秒前
故渊完成签到,获得积分10
5秒前
5秒前
JamesPei应助含蓄的成威采纳,获得10
7秒前
7秒前
7秒前
蒋彪完成签到 ,获得积分10
7秒前
丁丁完成签到 ,获得积分20
8秒前
核桃完成签到 ,获得积分10
8秒前
Viv完成签到,获得积分10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797