基因
医学
皮肌炎
基因表达
微阵列分析技术
生物信息学
计算生物学
遗传学
生物
病理
作者
J. Q. Zhang,S. X. Zhang,Rui Zhao,Jie Qiao,Mengying Qiu,Shao Zheng Song,M. J. Chang,Y. Zhang,Guangzhen Liu,Pei He,X. Li
标识
DOI:10.1136/annrheumdis-2021-eular.2323
摘要
Background: Dermatomyositis (DM) is an idiopathic inflammatory myopathy with heterogeneous clinical manifestation that raise challenges regarding diagnosis and therapy 1 . Ferroptosis is a newly discovered form of regulated cell death that is the nexus between metabolism, redox biology, and rheumatic immune diseases 2 . However, how ferroptosis maintains the balance of lymphocyte T cells and affect disease activity in DM is unclear. Objectives: To investigate an ferroptosis-related multiple gene expression signature for classification by assessing the global gene expression profile, and calculate the lymphocyte T cells status in the different subsets. Methods: Gene expression profiles of skeletal muscle from DM samples were acquired from GEO database. GSE143323 (30 patients and 20 HCs) was selected as the training set. The GSE3307 contained 21 DM patients and was selected as the validation set. The 60 ferroptosis genes were obtained from previous literature 3 . The intersection of the global gene and ferroptosis genes was considered the set of significant G-Ferroptosis genes for further analysis. The “NMF” (R-package) was applied as an unsupervised clustering method for sample classification by using G-Ferroptosis genes expression microarray data from the training datasets. An ferroptosis score model was constructed. The performance of the ferroptosis genes-based risk score model constructed by the DM training set was validated in the batch-1 and batch-2 DM sets. Normalized ferroptosis genes training data was used to compare the ssGSEA scores of gene sets between the high risk and low risk group. The statistical software package R (version 4.0.3) was used for all analyses. P value < 0.05 were considered statistically significant. Results: We selected 54 significant G-Ferroptosis genes for further analysis in training set. There were 2 distinct subtypes (high-ferroptosis-score groups and low-ferroptosis-score groups) identified in G-Ferroptosis genes cohort which were also identified in validation datasets (Fig.1A, C, D). Metallothionein 1G (MT1G) was a characteristic gene of low-ferroptosis-score group. The characteristic genes of high-ferroptosis-score group were acyl-CoA synthetase family member 2(ACSF2) and aconitase 1(ACO1) (Fig.1B). Patients in high-ferroptosis-score group had a lower level of Tregs compared with that of low-ferroptosis-score patients in both training and validation set ( P <0.05, Fig.1E). Conclusion: The biological process of ferroptosis is associated with the lever of Tregs, suggesting the process of ferroptosis may be involved in the disease progression of DM. Identificating ferroptosis-related features for DM might provide a new idea for clinical treatment. References: [1]DeWane ME, Waldman R, Lu J. Dermatomyositis: Clinical features and pathogenesis. Journal of the American Academy of Dermatology 2020;82(2):267-81. doi: 10.1016/j.jaad.2019.06.1309 [published Online First: 2019/07/08]. [2]Liang C, Zhang X, Yang M, et al. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced materials (Deerfield Beach, Fla) 2019;31(51):e1904197. doi: 10.1002/adma.201904197 [published Online First: 2019/10/09]. [3]Liang JY, Wang DS, Lin HC, et al. A Novel Ferroptosis-related Gene Signature for Overall Survival Prediction in Patients with Hepatocellular Carcinoma. International journal of biological sciences 2020;16(13):2430-41. doi: 10.7150/ijbs.45050 [published Online First: 2020/08/08]. Acknowledgements: This project was supported by National Science Foundation of China (82001740).Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078). Disclosure of Interests: None declared
科研通智能强力驱动
Strongly Powered by AbleSci AI