Li+ Diffusion in Amorphous and Crystalline Al2O3 for Battery Electrode Coatings

材料科学 阳极 无定形固体 化学物理 扩散阻挡层 阴极 电极 锂(药物) 扩散 纳米技术 结晶学 热力学 化学 物理化学 图层(电子) 内分泌学 物理 医学
作者
Adelaide M. Nolan,Darshana Wickramaratne,Noam Bernstein,Yifei Mo,M. D. Johannes
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (19): 7795-7804 被引量:19
标识
DOI:10.1021/acs.chemmater.1c02239
摘要

Al2O3 is often applied protectively to lithium-ion battery anode and cathode materials to inhibit surface degradation, suppress dendrite formation, and relieve mechanical stresses. Given the very high intrinsic band gap and diffusion barrier of the material, the mechanism that allows Li diffusion through these coatings is not well understood, and widely varying laboratory results indicate that there may be dependencies on morphology and stoichiometry. Using nudged elastic band calculations and ab initio molecular dynamics, we perform a systematic investigation across Al2O3 structures, both crystalline and amorphous, and at various concentrations of Li+ to uncover the optimal parameters for maximally diffusive coatings. We find a correlation between the low proximity of Li+ to Al3+ and the low Li+ migration barrier. Although barriers are the lowest in the highly diffusive one-dimensional channels of crystalline θ-Al2O3, the system is structurally delicate and subject to detrimental distortion as the Li+ content is increased. The α-Al2O3 lattice is, conversely, highly stable against distortion at all Li+ concentrations but disadvantageous for Li+ migration. In amorphous systems, unscreened Li+–Li+ Coulomb repulsion and pre-emptive occupation of "trapping sites" combine to lower the energy barriers as a function of increasing concentration. One of our most important findings is that Al-deficient materials can sharply increase Li+ movement, and we predict that an amorphous material with a combination of high Li+ concentration and Al deficiency would enable highly Li+-conductive protective coatings for electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助娜行采纳,获得10
刚刚
刚刚
传奇3应助后知后觉采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助Chem is try采纳,获得10
1秒前
2秒前
a方舟发布了新的文献求助10
2秒前
寒冷书竹发布了新的文献求助10
2秒前
2秒前
hhh发布了新的文献求助10
2秒前
顾矜应助富婆嘉嘉子采纳,获得10
2秒前
2秒前
2秒前
3秒前
江风海韵完成签到,获得积分10
3秒前
火星上的从雪完成签到,获得积分10
3秒前
在水一方应助kai采纳,获得10
3秒前
打打应助留胡子的青柏采纳,获得10
4秒前
4秒前
zhanghw发布了新的文献求助10
4秒前
Frank完成签到,获得积分10
4秒前
桐桐应助小喵采纳,获得10
4秒前
香蕉觅云应助执笔客采纳,获得10
4秒前
light完成签到 ,获得积分10
4秒前
你仔细听完成签到,获得积分10
5秒前
5秒前
Sailzyf完成签到,获得积分10
5秒前
抓恐龙发布了新的文献求助10
5秒前
5秒前
汉堡包应助言小采纳,获得10
6秒前
Chen发布了新的文献求助10
6秒前
lql233完成签到,获得积分20
6秒前
雪白问兰完成签到 ,获得积分10
6秒前
6秒前
魅力蜗牛完成签到,获得积分10
6秒前
6秒前
upup小李完成签到 ,获得积分10
7秒前
手帕很忙完成签到,获得积分10
7秒前
害羞含雁发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672