Automated sleep apnea detection in snoring signal using long short-term memory neural networks

Mel倒谱 计算机科学 呼吸不足 阻塞性睡眠呼吸暂停 多导睡眠图 话筒 睡眠呼吸暂停 语音识别 医学 人工神经网络 模式识别(心理学) 金标准(测试) 支持向量机 人工智能 呼吸暂停 特征提取 心脏病学 内科学 声压 电信
作者
Siyi Cheng,Chao Wang,Keqiang Yue,Ruixue Li,Fanlin Shen,Wenjie Shuai,Wenjun Li,Lili Dai
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103238-103238 被引量:31
标识
DOI:10.1016/j.bspc.2021.103238
摘要

Obstructive sleep apnea hypopnea syndrome (OSAHS) is a high incidence disease with serious hazard and potential danger. The polysomnography(PSG) has become the gold standard to diagnose OSAHS. However, the PSG is limited for household use because of its operational complexity, technical nature and high consumption.Currently, Microphone, as a non-contacting tensor, is an alternative method. And researchers devoted to analyze respiratory sound for detecting and evaluating OSAHS patients. In this paper, a classifier based on Long Short-Term Memory (LSTM) is proposed to identify the respiratory event-related snoring from simple snoring. Firstly, we collected the sleep sound of 33 patients and 10 normal people from the hospital. And 4780 abnormal snoring segments and 10,740 normal snoring segments were recorded by Mics. Then Mel-frequency cepstrum coefficients(MFCC), Mel Filter Banks (Fbanks), Short-time Energy and Linear Prediction Coefficient(LPC), representing the different characteristics of snoring, are extracted as characteristic features of snoring.At last, a multi-input model based on LSTM is designed, which can receive various audio features to synthesize information to identify snoring. Compared with single feature network processing, the use of multiple feature coefficients can identify the features of snoring at a fine-grained level. In the experiment, our method could classify respiratory event related snoring and normal snoring at accuracy 95.3%, and the accuracy of the three-category snore related to the severity of OSAHS can reach 81.6%. The recognition results can be used for the auxiliary diagnosis of OSAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
6秒前
7秒前
xacd完成签到,获得积分10
8秒前
9秒前
Ava应助Wendy采纳,获得10
10秒前
Someone发布了新的文献求助30
10秒前
11秒前
13秒前
pbf发布了新的文献求助10
15秒前
15秒前
17秒前
huahua诀绝子完成签到,获得积分10
17秒前
18秒前
ding应助晚棠采纳,获得10
18秒前
20秒前
Jiaqiang关注了科研通微信公众号
20秒前
认真的弼发布了新的文献求助10
20秒前
tutu发布了新的文献求助10
22秒前
linlin应助xw采纳,获得30
22秒前
23秒前
一杯沧海完成签到 ,获得积分10
24秒前
沉默问萍发布了新的文献求助10
24秒前
24秒前
难过翠琴完成签到,获得积分10
24秒前
FIN应助淡定的安梦采纳,获得20
26秒前
27秒前
鲨鱼的角应助认真的弼采纳,获得10
29秒前
尔竹完成签到,获得积分10
31秒前
31秒前
31秒前
出版完成签到,获得积分20
32秒前
tutu完成签到,获得积分10
32秒前
34秒前
34秒前
OvO发布了新的文献求助10
34秒前
卷卷516发布了新的文献求助10
35秒前
35秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494