De Novo Structure-Based Drug Design Using Deep Learning

计算机科学 生成模型 配体(生物化学) 计算生物学 人工智能 小分子 活动站点 图形 药物发现 生成语法 机器学习 化学 生物 理论计算机科学 生物化学 受体
作者
Sowmya Krishnan,Navneet Bung,Sarveswara Rao Vangala,R. Srinivasan,Gopalakrishnan Bulusu,Arijit Roy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5100-5109 被引量:22
标识
DOI:10.1021/acs.jcim.1c01319
摘要

In recent years, deep learning-based methods have emerged as promising tools for de novo drug design. Most of these methods are ligand-based, where an initial target-specific ligand data set is necessary to design potent molecules with optimized properties. Although there have been attempts to develop alternative ways to design target-specific ligand data sets, availability of such data sets remains a challenge while designing molecules against novel target proteins. In this work, we propose a deep learning-based method, where the knowledge of the active site structure of the target protein is sufficient to design new molecules. First, a graph attention model was used to learn the structure and features of the amino acids in the active site of proteins that are experimentally known to form protein–ligand complexes. Next, the learned active site features were used along with a pretrained generative model for conditional generation of new molecules. A bioactivity prediction model was then used in a reinforcement learning framework to optimize the conditional generative model. We validated our method against two well-studied proteins, Janus kinase 2 (JAK2) and dopamine receptor D2 (DRD2), where we produce molecules similar to the known inhibitors. The graph attention model could identify the probable key active site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
健康的水杯完成签到,获得积分10
1秒前
1秒前
2秒前
赘婿应助来来来采纳,获得10
2秒前
2秒前
sunsun10086完成签到 ,获得积分10
3秒前
3秒前
美好的听荷完成签到,获得积分10
3秒前
一头傻元芳关注了科研通微信公众号
4秒前
小马甲应助Amjad采纳,获得10
5秒前
6秒前
宝贝完成签到 ,获得积分10
6秒前
芹菜完成签到,获得积分10
6秒前
6秒前
刻苦的亦凝完成签到,获得积分10
6秒前
7秒前
星辰大海应助hgl采纳,获得10
7秒前
猩猩发布了新的文献求助10
7秒前
你不刷牙发布了新的文献求助10
9秒前
10秒前
幸福的罡发布了新的文献求助10
11秒前
kkk完成签到 ,获得积分10
11秒前
11秒前
来来来完成签到,获得积分10
14秒前
朴素访琴完成签到 ,获得积分10
15秒前
小巫见大巫完成签到,获得积分10
16秒前
16秒前
干净翠桃发布了新的文献求助10
17秒前
17秒前
faye发布了新的文献求助20
17秒前
19秒前
手帕很忙完成签到,获得积分10
20秒前
21秒前
小明发布了新的文献求助20
21秒前
Lucas应助linzhuo采纳,获得10
22秒前
赘婿应助yg采纳,获得10
24秒前
orixero应助段辉采纳,获得10
25秒前
钇铯完成签到,获得积分10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458