De Novo Structure-Based Drug Design Using Deep Learning

药品 计算机科学 计算生物学 深度学习 人工智能 药物发现 医学 药理学 生物 生物信息学
作者
Sowmya Ramaswamy Krishnan,Navneet Bung,Sarveswara Rao Vangala,Rajgopal Srinivasan,Gopalakrishnan Bulusu,Arijit Roy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5100-5109 被引量:36
标识
DOI:10.1021/acs.jcim.1c01319
摘要

In recent years, deep learning-based methods have emerged as promising tools for de novo drug design. Most of these methods are ligand-based, where an initial target-specific ligand data set is necessary to design potent molecules with optimized properties. Although there have been attempts to develop alternative ways to design target-specific ligand data sets, availability of such data sets remains a challenge while designing molecules against novel target proteins. In this work, we propose a deep learning-based method, where the knowledge of the active site structure of the target protein is sufficient to design new molecules. First, a graph attention model was used to learn the structure and features of the amino acids in the active site of proteins that are experimentally known to form protein–ligand complexes. Next, the learned active site features were used along with a pretrained generative model for conditional generation of new molecules. A bioactivity prediction model was then used in a reinforcement learning framework to optimize the conditional generative model. We validated our method against two well-studied proteins, Janus kinase 2 (JAK2) and dopamine receptor D2 (DRD2), where we produce molecules similar to the known inhibitors. The graph attention model could identify the probable key active site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
互助棍哥完成签到,获得积分10
刚刚
wanci应助念姬采纳,获得10
3秒前
jiejie完成签到,获得积分10
4秒前
来杯姜茶发布了新的文献求助10
4秒前
huxiaomin完成签到,获得积分20
5秒前
星沐影完成签到,获得积分10
7秒前
64658应助王博林采纳,获得10
9秒前
11秒前
CipherSage应助zjl采纳,获得10
14秒前
16秒前
16秒前
EE完成签到,获得积分10
17秒前
烂漫的冬易完成签到,获得积分10
18秒前
viper3完成签到,获得积分10
21秒前
21秒前
研友_VZG7GZ应助EE采纳,获得10
21秒前
小蘑菇应助ff采纳,获得10
22秒前
www完成签到 ,获得积分10
23秒前
23秒前
旅行的小七仔完成签到,获得积分10
24秒前
25秒前
灰鸽舞完成签到 ,获得积分10
25秒前
阿半半啊完成签到 ,获得积分10
25秒前
一路向南发布了新的文献求助10
27秒前
zjl发布了新的文献求助10
28秒前
慕容博完成签到 ,获得积分10
29秒前
神内打工人完成签到 ,获得积分10
29秒前
酷波er应助pcx采纳,获得10
34秒前
34秒前
鱼莉完成签到,获得积分10
34秒前
Hello应助Jenny采纳,获得10
36秒前
heyl发布了新的文献求助10
36秒前
思源应助科研通管家采纳,获得10
36秒前
DamenS完成签到,获得积分10
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
ED应助科研通管家采纳,获得10
37秒前
8R60d8应助科研通管家采纳,获得10
37秒前
NexusExplorer应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得30
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324