De Novo Structure-Based Drug Design Using Deep Learning

药品 计算机科学 计算生物学 深度学习 人工智能 药物发现 医学 药理学 生物 生物信息学
作者
Sowmya Ramaswamy Krishnan,Navneet Bung,Sarveswara Rao Vangala,Rajgopal Srinivasan,Gopalakrishnan Bulusu,Arijit Roy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5100-5109 被引量:36
标识
DOI:10.1021/acs.jcim.1c01319
摘要

In recent years, deep learning-based methods have emerged as promising tools for de novo drug design. Most of these methods are ligand-based, where an initial target-specific ligand data set is necessary to design potent molecules with optimized properties. Although there have been attempts to develop alternative ways to design target-specific ligand data sets, availability of such data sets remains a challenge while designing molecules against novel target proteins. In this work, we propose a deep learning-based method, where the knowledge of the active site structure of the target protein is sufficient to design new molecules. First, a graph attention model was used to learn the structure and features of the amino acids in the active site of proteins that are experimentally known to form protein–ligand complexes. Next, the learned active site features were used along with a pretrained generative model for conditional generation of new molecules. A bioactivity prediction model was then used in a reinforcement learning framework to optimize the conditional generative model. We validated our method against two well-studied proteins, Janus kinase 2 (JAK2) and dopamine receptor D2 (DRD2), where we produce molecules similar to the known inhibitors. The graph attention model could identify the probable key active site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
万能图书馆应助Zo采纳,获得30
1秒前
糖炒小白云完成签到,获得积分10
1秒前
郝天鑫完成签到,获得积分10
1秒前
加减乘除发布了新的文献求助10
1秒前
风中的溪流完成签到,获得积分10
2秒前
李春生完成签到,获得积分10
2秒前
加油少年完成签到,获得积分10
3秒前
3秒前
美少叔叔完成签到 ,获得积分10
3秒前
4秒前
yw完成签到 ,获得积分10
4秒前
4秒前
jzs完成签到 ,获得积分10
4秒前
cxy完成签到,获得积分10
6秒前
cc完成签到,获得积分10
6秒前
巴达天使完成签到,获得积分10
7秒前
潇洒台灯完成签到,获得积分10
7秒前
Owen应助加油少年采纳,获得10
8秒前
蘑菇完成签到,获得积分10
9秒前
郝郝完成签到,获得积分10
9秒前
QQ完成签到,获得积分10
10秒前
糟糕的翅膀完成签到,获得积分10
10秒前
JJJ发布了新的文献求助30
10秒前
qiangxu完成签到,获得积分10
11秒前
11秒前
Cat4pig完成签到 ,获得积分10
11秒前
HH完成签到 ,获得积分10
12秒前
爆米花应助顺心的水云采纳,获得10
12秒前
叶子完成签到,获得积分10
13秒前
13秒前
星之完成签到,获得积分10
13秒前
诚心熊猫完成签到,获得积分10
15秒前
就是一种水稻的完成签到,获得积分10
16秒前
17秒前
YY完成签到 ,获得积分10
17秒前
yy完成签到 ,获得积分10
18秒前
18秒前
aaaa完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131