A graph convolutional topic model for short and noisy text streams

WordNet公司 计算机科学 文字2vec 知识图 图形 人工智能 利用 机器学习 概率逻辑 数据流挖掘 卷积神经网络 数据挖掘 理论计算机科学 自然语言处理 计算机安全 嵌入
作者
Ngo Van Linh,Tran Xuan Bach,Khoat Than
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:468: 345-359 被引量:10
标识
DOI:10.1016/j.neucom.2021.10.047
摘要

Learning hidden topics from data streams has become absolutely necessary but posed challenging problems such as concept drift as well as short and noisy data. Using prior knowledge to enrich a topic model is one of potential solutions to cope with these challenges. Prior knowledge that is derived from human knowledge (e.g. Wordnet) or a pre-trained model (e.g. Word2vec) is very valuable and useful to help topic models work better. However, in a streaming environment where data arrives continually and infinitely, existing studies are limited to exploiting these resources effectively. Especially, a knowledge graph, that contains meaningful word relations, is ignored. In this paper, to aim at exploiting a knowledge graph effectively, we propose a novel graph convolutional topic model (GCTM) which integrates graph convolutional networks (GCN) into a topic model and a learning method which learns the networks and the topic model simultaneously for data streams. In each minibatch, our method not only can exploit an external knowledge graph but also can balance the external and old knowledge to perform well on new data. We conduct extensive experiments to evaluate our method with both a human knowledge graph (Wordnet) and a graph built from pre-trained word embeddings (Word2vec). The experimental results show that our method achieves significantly better performances than state-of-the-art baselines in terms of probabilistic predictive measure and topic coherence. In particular, our method can work well when dealing with short texts as well as concept drift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
艾斯完成签到 ,获得积分10
刚刚
2秒前
天天快乐应助陈曦采纳,获得10
2秒前
在水一方应助MEDwhy采纳,获得10
3秒前
科研通AI5应助YJ888采纳,获得10
6秒前
农夫完成签到,获得积分0
6秒前
6秒前
8秒前
wonder123发布了新的文献求助10
13秒前
14秒前
15秒前
Lyn发布了新的文献求助10
16秒前
柴胡完成签到,获得积分10
16秒前
大个应助wonder123采纳,获得10
17秒前
FashionBoy应助lan采纳,获得10
18秒前
善学以致用应助doiwanado采纳,获得10
19秒前
20秒前
20秒前
眼睛大如天完成签到,获得积分10
21秒前
slx发布了新的文献求助100
22秒前
风趣依瑶发布了新的文献求助10
23秒前
PAN完成签到,获得积分20
23秒前
haha发布了新的文献求助10
23秒前
23秒前
科研民工_郭完成签到,获得积分10
25秒前
吕子尚发布了新的文献求助10
26秒前
淡定落雁发布了新的文献求助10
26秒前
cis2014发布了新的文献求助10
26秒前
Mxj0607发布了新的文献求助10
27秒前
28秒前
wudizhuzhu233完成签到,获得积分10
28秒前
赘婿应助123456采纳,获得10
30秒前
30秒前
31秒前
31秒前
31秒前
不一样的烟火完成签到,获得积分10
33秒前
hmd_150完成签到,获得积分10
33秒前
sssss发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176