A graph convolutional topic model for short and noisy text streams

WordNet公司 计算机科学 文字2vec 知识图 图形 人工智能 利用 机器学习 概率逻辑 数据流挖掘 卷积神经网络 数据挖掘 理论计算机科学 自然语言处理 计算机安全 嵌入
作者
Ngo Van Linh,Tran Xuan Bach,Khoat Than
出处
期刊:Neurocomputing [Elsevier]
卷期号:468: 345-359 被引量:10
标识
DOI:10.1016/j.neucom.2021.10.047
摘要

Learning hidden topics from data streams has become absolutely necessary but posed challenging problems such as concept drift as well as short and noisy data. Using prior knowledge to enrich a topic model is one of potential solutions to cope with these challenges. Prior knowledge that is derived from human knowledge (e.g. Wordnet) or a pre-trained model (e.g. Word2vec) is very valuable and useful to help topic models work better. However, in a streaming environment where data arrives continually and infinitely, existing studies are limited to exploiting these resources effectively. Especially, a knowledge graph, that contains meaningful word relations, is ignored. In this paper, to aim at exploiting a knowledge graph effectively, we propose a novel graph convolutional topic model (GCTM) which integrates graph convolutional networks (GCN) into a topic model and a learning method which learns the networks and the topic model simultaneously for data streams. In each minibatch, our method not only can exploit an external knowledge graph but also can balance the external and old knowledge to perform well on new data. We conduct extensive experiments to evaluate our method with both a human knowledge graph (Wordnet) and a graph built from pre-trained word embeddings (Word2vec). The experimental results show that our method achieves significantly better performances than state-of-the-art baselines in terms of probabilistic predictive measure and topic coherence. In particular, our method can work well when dealing with short texts as well as concept drift.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山羊不吃兔完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
静翕完成签到 ,获得积分10
2秒前
komisan完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
坚定寒松完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
1111完成签到 ,获得积分10
13秒前
秋秋完成签到,获得积分10
14秒前
青青完成签到 ,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
Jasper应助慕容飞凤采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
顾城浪子完成签到,获得积分10
20秒前
有魅力胡萝卜完成签到,获得积分10
21秒前
七QI完成签到 ,获得积分10
22秒前
LIUJIE完成签到,获得积分10
23秒前
576-576完成签到 ,获得积分10
23秒前
smh完成签到 ,获得积分10
25秒前
李健应助有魅力胡萝卜采纳,获得10
25秒前
小武完成签到,获得积分10
25秒前
聂先生完成签到,获得积分10
29秒前
影像大侠完成签到,获得积分10
31秒前
xyzlancet完成签到,获得积分10
32秒前
MM完成签到 ,获得积分10
33秒前
唐唐完成签到,获得积分10
34秒前
WXyue完成签到 ,获得积分10
34秒前
耕牛热完成签到,获得积分10
35秒前
望凌烟完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
jiaojaioo完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
41秒前
端庄的凌旋完成签到,获得积分10
44秒前
嗯嗯完成签到 ,获得积分10
45秒前
Diane完成签到,获得积分10
47秒前
51秒前
fuluyuzhe_668完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858