Evolutionary optimization assisted delayed deep cycle reservoir modeling method with its application to ship heave motion prediction

启发式 差异进化 计算机科学 系列(地层学) 深度学习 人工智能 进化算法 全局优化 数学优化 算法 数学 地质学 古生物学
作者
Lumeng Huang,Xiaogang Deng,Ying-Chun Bo,Yanting Zhang,Ping Wang
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:126: 638-648 被引量:14
标识
DOI:10.1016/j.isatra.2021.08.020
摘要

As one emerging reservoir modeling method, cycle reservoir with regular jumps (CRJ) provides one effective tool for many time series analysis tasks such as ship heave motion prediction. However, the shallow learning structure of single CRJ model limits its memory capacity and leads to unsatisfactory prediction performance. In order to pursue the stronger dynamic characteristic description of time series data, a delayed deep CRJ model is presented in this paper by integrating the deep learning framework with delay links and the evolutionary optimization for mixed-integer problem. Different from the basic CRJ model with only one reservoir, delayed deep CRJ builds multiple serial reservoirs with inserting the delay links between adjacent reservoirs. Due to the design of dynamic deep learning structure, the memory capacity is enlarged to improve ship heave motion prediction. Aiming at the mix-integer optimization problem in delayed deep CRJ model, a heuristic evolutionary optimization scheme based on the stepwise differential evolution algorithm is applied to determine the delayed deep CRJ parameters automatically. The stepwise differential evolution assisted delayed deep CRJ model can avoid the non-optimal solution resulted from the manual parameter setting effectively. Finally, one numerical example and the real experiment data are utilized to validate the methods and the results demonstrate that delayed deep CRJ model has better prediction performance in contrast to the basic CRJ method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WMT完成签到 ,获得积分10
刚刚
Smiling完成签到,获得积分10
1秒前
英俊的铭应助练大金采纳,获得10
1秒前
1秒前
认真勒完成签到 ,获得积分10
1秒前
2秒前
仙女蛋蛋打怪兽完成签到,获得积分10
2秒前
简单的烤鸡完成签到,获得积分10
2秒前
SYLH应助bodhi采纳,获得10
3秒前
大个应助左丘以云采纳,获得10
4秒前
4秒前
4u完成签到,获得积分10
4秒前
simon完成签到,获得积分10
4秒前
gayfall完成签到,获得积分10
4秒前
王帅坤发布了新的文献求助10
5秒前
科研狗发布了新的文献求助10
5秒前
HtheJ完成签到,获得积分10
6秒前
6秒前
123321完成签到,获得积分10
6秒前
李健的小迷弟应助1234采纳,获得10
6秒前
6秒前
adore完成签到,获得积分20
6秒前
英俊的铭应助甜美的雁开采纳,获得10
7秒前
AbMole_小智完成签到,获得积分10
7秒前
玥越发布了新的文献求助30
8秒前
Ava应助天地一沙鸥采纳,获得10
8秒前
6rkuttsmdt完成签到,获得积分10
8秒前
雪白的凡灵完成签到,获得积分10
9秒前
yangyijx完成签到,获得积分10
10秒前
牛马完成签到,获得积分10
11秒前
直球科研发布了新的文献求助10
11秒前
11秒前
12秒前
HUA发布了新的文献求助10
12秒前
13秒前
yln发布了新的文献求助10
13秒前
14秒前
14秒前
KUZZZ完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653